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Abstract  

This systematic literature review examines the impact of occupant activities and patterns on efficient energy 

utilization in higher education buildings. The building sector is a major global energy consumer, with education 

institutions contributing significantly due to their diverse functions and occupancy variability. Traditional building 

control systems, relying on fixed schedules, often lead to substantial energy waste as they do not account for actual 

occupancy. This paper synthesizes literature from 2015-2025, using PRISMA guidelines and Scopus as a primary 

database, ultimately analyzing 52 eligible articles. It identifies various approaches for learning occupant behavior, 

including dedicated sensors, Wi-Fi infrastructure, and advanced analytical techniques like machine learning and 

model predictive control. Key occupant activities negatively impacting energy efficiency include Heating, Ventilation, 

and Air Conditioning (HVAC) setpoint adjustments, fixed operating schedules and mismanagement of equipment and 

lighting. These behaviors result in significant energy waste, with HVAC systems and electronic devices being major 

contributors. The study highlights a research gap in understanding occupant activity and energy efficiency in student 

accommodation. Addressing these dynamic and often unpredictable occupant behaviors is crucial for achieving 

sustainable energy management in university campuses. 

Keywords: Occupant Behavior; Energy Efficiency; Energy Consumption; Commercial Building; Higher Education 

Buildings 
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1. Introduction 

The building sector is a significant global energy consumer, accounting for approximately 40% of total 

worldwide energy consumption and contributing to 30% or more of global CO2 emissions (Gui et al., 2021; 

Kula et al., 2023; Rafiq et al., 2024; Safwat et al., 2024). This demand is continuously increasing due to factors 

such as growing populations and rising standards of living, which exacerbate challenges related to depleting 

fossil fuels, climate change, and sustainability (Jafarinejad et al., 2019; Rafiq et al., 2024).  

Within the commercial building sector, education buildings are substantial energy users, representing a 

considerable contribution to overall energy consumption (Brucal et al., 2025; Elbellahy et al., 2024; Kula et al., 

2023; Safwat et al., 2024; Taheri et al., 2024). Universities, in particular, function akin to "small cities" due to 

their size, diverse populations, and varied activities, encompassing laboratories, lecture halls, libraries, and 

administrative offices, all with distinct energy needs (Brucal et al., 2025; Gui et al., 2021; Safwat et al., 2024). 

These complexities often lead to energy being wasted. For instance, a report indicates that 30% of total energy 

consumption in commercial buildings is wasted (Rafiq et al., 2024). 

A crucial, yet often overlooked, factor influencing building energy consumption is the presence and 

behavior of occupants (Leong and Essah, 2017; Michailidis et al., 2018; Rafiq et al., 2024; Zou et al., 2017). 

Systems like HVAC and lighting are major energy consumers, accounting for nearly 60% of all energy used in 

commercial buildings (Chaer et al., 2025; Kula et al., 2023; Rafiq et al., 2024). While most traditional building 

control systems rely on fixed, predetermined occupancy schedules, these schedules frequently differ 

significantly from actual occupancy patterns, resulting in substantial and unnecessary energy consumption 

(Ben-Nakhi and Mahmoud, 2017; Jagadeesh Simma et al., 2019; Zou et al., 2017). For example, studies have 

shown that average occupancy rates in university offices are rarely above 60% of maximum capacity, yet HVAC 

systems often follow static schedules, leading to considerable energy waste (Kula et al., 2023). 

The emergence of smart buildings, enabled by Internet of Things (IoT) devices, automation systems, and 

Building Energy Management Systems (BEMS), offers a pathway to more efficient energy management through 

the availability of real-time data (Bellala et al., 2017; Hossain et al., 2020; Jagadeesh Simma et al., 2019; Simma 

et al., 2019; Wagiman et al., 2020). Modern machine learning (ML) algorithms and artificial neural networks 

(ANN) can process this data to forecast and schedule building loads effectively, leading to optimized energy 

utilization and cost reduction (Jafarinejad et al., 2019; Rafiq et al., 2024; Ramli et al., 2024). Incorporating real-

time occupancy information allows for dynamic adjustment of systems like HVAC and lighting, which can 

significantly enhance energy efficiency and occupant comfort (Jagadeesh Simma et al., 2019; Kula et al., 2023; 

Rafiq et al., 2024). Studies have demonstrated that integrating real-time occupancy data can lead to substantial 

energy savings, with some approaches achieving up to 77% energy savings while improving comfort (Rajabi 

et al., 2022). For instance, WiFi-based occupancy schedules have resulted in at least 50% savings in HVAC 

energy consumption over static schedules in institutional buildings (Jagadeesh Simma et al., 2019). 

Despite the recognized importance of occupant information, a "performance gap" frequently exists between 

the predicted and actual energy consumption of buildings (Alfalah et al., 2023; Kula et al., 2023). This gap is 

largely attributed to the inadequate consideration of dynamic occupant behavior during the design and 

operation phases (Alfalah et al., 2023; Jagadeesh Simma et al., 2019; Kula et al., 2023). While advancements in 

data collection (e.g., infrared video image sensors, WiFi networks) are improving the accuracy of occupancy 

data (Alfalah et al., 2023; Kula et al., 2023; Simma et al., 2019), there remains a lack of comprehensive, long-
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term empirical research and standardized methodologies specifically focused on the impact of occupant 

activities on energy utilization in higher education buildings (Alfalah et al., 2023; Hossain et al., 2020). Many 

existing studies have concentrated on residential or commercial office buildings, or have been conducted over 

shorter durations, limiting their applicability to the unique context of higher education (Alfalah et al., 2023; 

Hossain et al., 2020; J. Yang et al., 2016). 

This systematic review aims to bridge this knowledge gap by comprehensively analyzing and synthesizing 

existing literature on the impact of occupant activities on efficient energy utilization in higher education 

buildings by putting up the following research questions; 

• What approaches are employed to learn occupant behavior and patterns in higher education 

institutions?  

• What specific occupant activities have the most significant negative impact on energy efficiency on 

buildings in higher education institutions? 

• What categories can be used to classify the energy-related challenges resulting from occupant 

behaviors? 

• How are energy efficient practices and programs promoted in higher education institutions? 

Furthermore, by examining various methodologies, findings, and challenges, this review seeks to provide a 

holistic understanding of the current state of research, identify key influential factors, and highlight 

opportunities for future advancements in achieving sustainable energy management in university and college 

campuses worldwide. 

2. Methodology 

This study was performed to present an understanding of occupant behavior in an academic environment. The 

methods and approaches used by researcher to learn and categorize occupant activities, impact on energy 

efficiency, and how energy efficient programs are promoted in higher education institutions was emphasized 

in the review. The systematic literature review employed the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines. Scopus search engine was used to collect data covering 

2015-2025 for this study, and all selected documents were in English. The search for articles for this study was 

conducted on the 18th of June 2025. 

The search for relevant articles was executed by exploring the title and keywords sections of the electronic 

databases mentioned above. The search strategy involved various combinations of keywords related to 

research area, using Boolean operators (“AND” and “OR”) to combine the search terms. The search keywords 

used for the literature exploration were occupancy, occupant activities, energy utilization, energy management, 

commercial building and educational building. The following search query was used to identify and retrieve 

all articles related to the research topic: ("occupancy" OR "occupant activities" AND "energy utilization" OR 

"energy management" AND” commercial building" OR “educational building"). 

Inclusion/exclusion criteria: This review synthesized studies with varying methodologies and standards to 

capture the complexity of occupant behavior and energy usage. By examining diverse aspects, including 

occupant patterns, energy wastage, data collection technologies, efficient practices, and predictive models, we 

gained a deeper understanding of the research landscape and its implications for future research. 
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The initial search yielded 263 documents, and for eligibility, studies from 2015 to 2025 were considered, 

dropping the documents to 200. Given the rapid evolution of BEMS and predictive modeling, this review 

prioritizes recent research (post-2014) to reflect the current state of knowledge on occupant behavior and 

energy usage in higher education buildings, ensuring relevance and accuracy. Based on this eligibility, Table 1. 

shows documents published by year. Out of the documents published within the study range, 2018 and 2022 

recorded 12%; making the both year recording the highest publications. This may indicate a high level of 

research activity or significant data gathering. As of the time this search was conducted, the least goes to 2025 

followed by 2024 recording 3.5% and 6.5% respectively. Declining effort in this area was recorded from 2023 

to date although days are still counting for the year 2025. 

Table 1. Documents published by year 

Year Number of document published 

2015 20 
2016 21 
2017 19 
2018 24 
2019 16 
2020 17 
2021 23 
2022 24 
2023 16 
2024 13 
2025 7 

 

The study further investigated the search based on document type. As revealed on the Figure 1., the highest 

percentage (49.5%) of number of publication came from journal articles followed by conference papers 

(45.0%) and the least was book chapter and conference review. The analysis also revealed that review only 

made up 3.5% of the documents, indicating the need for this study (a systematic review). 

 

 

Figure 1. Percentage of document type (source: scopus.com) 

https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2015
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2016
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2017
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2018
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2019
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2020
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2021
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2022
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2023
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2024
https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2025
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Table 2. Selection and exclusion criteria 

Selection criteria Exclusion criteria  
Articles published between 2015-2025 Articles published before 2015 
Publication in English language  Articles not in English language 
Research published in academic journals and 
conference proceedings 
 

Review, conference review and book chapter 

Relevance of the title and abstract to occupant 
behavior, occupant activities, energy efficiency, 
predictive models, occupancy and data collection 
technologies in education buildings. 
 

Studies outside the scope of education 
buildings 

Studies that were specifically done on higher 
education buildings  

Studies outside the scope of higher education 
buildings 

 

 

Figure 2. PRISMA flow-chat: An illustration of data collection approach 

 

We subjected the remaining articles to a four-stage screening process, beginning with 198 journal and 

conference papers. Subsequent review of titles and abstracts narrowed the selection to 157, followed by the 

https://www.scopus.com/results/handle.uri?sort=plf-f&src=s&sot=a&sdt=a&sid=6beb5e06e630b607a2d4e4f305d46ad7&s=TITLE-ABS-KEY%28%22occupancy%22+OR+%22occupant+activities%22+AND+%22energy+utilization%22+OR+%22energy+management%22+AND+%22+commercial+building%22+OR+%22+educational+building%22%29+AND+PUBYEAR+%3e+2014+AND+PUBYEAR+%3c+2026&sl=191&origin=resultsAnalyzer&txGid=50f5159f403d197cc73068662502606b&origin=resultsAnalyzer&zone=year&count=200&clickedLink=limit%20to&selectedYearClusterCategories=2017
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exclusion of research unrelated to education buildings, leaving 67 articles. Ultimately, only studies focused on 

higher education institutions were included, resulting in the 52 eligible articles depicted in the PRISMA flow 

chart (Figure 2). This rigorous methodology allowed for precise identification of research gaps and effective 

addressing of research questions, yielding a reliable foundation for practical recommendations and future 

research directions. Table 2 shows the selection and exclusion criteria in detail. 

3. Result and interpretation 

This paper systematically analyzed 52 articles, focusing on themes such as occupant activities, comfort, 

presence, data collection, sensor technologies, forecasting models, control systems (for occupancy, energy, 

HVAC, and other appliances), and IoT-based systems. This comprehensive study revealed common research 

objectives, methodologies, and experimental setups. The objectives across all 52 reviewed articles can be 

summarized into five key areas: 

• To understand occupancy, their activities, patterns and comfort in higher education buildings. 

• To study different methods of occupancy presence and data collection technologies.  

• To understudy control technologies and their impact on energy efficiency in higher education buildings. 

• To simulate an energy efficient building without compromising occupant comfort and lastly, 

• To test and identify the best performing models to predict occupant presence and electricity 

consumption. 

The reviewed studies primarily leveraged simulation software, forecasting models, IoT and sensor 

technologies, questionnaires (as used in (Allab et al., 2017)), energy meters, and smart technologies to conduct 

their experiments. For example, several articles ((Ascione et al., 2015; F. Sangogboye et al., 2018; J. Yang et al., 

2016)) utilized EnergyPlus software to model educational buildings, aiming to optimize energy use. Various 

sensors were deployed to record occupant presence and environmental data. Furthermore, machine learning, 

deep learning, and hybrid models were commonly employed across experiments to predict both occupant 

presence and energy consumption. Among the 52 articles analyzed, the experimental locations varied, with 

offices (38.33%), classrooms/lecture halls (33.33%), and laboratories (16.67%) being the most frequently 

cited. A smaller portion (11.67%) involved ambiguous locations. It's noteworthy that, to our knowledge, none 

of the studies explicitly focused on student accommodation or hostels. 

Student accommodation has a unique energy profile due to its high density, varied occupancy, and shared 

facilities. Unlike typical residential buildings, it has higher baseline energy use around the clock, worsened by 

student habits like leaving lights on and a general lack of energy awareness (Alamel, 2021; Ayeleru et al., 2017; 

Jamaludin et al., 2017). This suggests a significant research gap concerning the impact of occupant activity on 

energy efficiency in student housing within higher education buildings. Additionally, Heating, Ventilation, and 

Air Conditioning (HVAC) systems were more frequently investigated compared to other appliances and plug 

loads in the reviewed articles. 

3.1. An overview on the methodologies 

The articles employ diverse methodologies. Some focus on data-driven models for load forecasting and 

optimization, using hybrid ML (LSTM, XgBoost, Random Forest, Linear Regression) (Rafiq et al., 2024), fuzzy 
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logic with Rough Set Theory (Brucal et al., 2025), or various ML algorithms (ANN, DNN, SVR) (Ramli et al., 

2024). Others utilize building energy modeling with tools like TRNSYS18 or EnergyPlus to evaluate retrofits, 

green roofs, or specific scenarios (Aparicio-Fernández et al., 2023; Ascione et al., 2015; J. Yang et al., 2016; Z. 

Yang et al., 2015). A significant segment involves IoT and sensing technologies for real-time environmental 

monitoring (Hossain et al., 2020), non-intrusive occupancy detection via WiFi (Zou et al., 2017), or Bluetooth 

Low Energy (BLE) for plug load management (Tekler et al., 2022). Methodologies also include experimental 

research with Post-Occupancy Evaluation (POE) surveys (Elbellahy et al., 2024; Hossain et al., 2020), regulated 

laboratory testing for sensor reliability (Kula et al., 2023), and data collection protocols where actual data is 

scarce (Safwat et al., 2024). 

However, among the methodologies synthesized, Rafiq et al.'s hybrid Machine Learning for load prediction 

stands out for combining different algorithms (LSTM, XgBoost, RF, LR) utilizing real-time occupant information 

for high accuracy, directly impacting energy optimization and cost savings (Rafiq et al., 2024). Meanwhile, the 

research did by Tekler et al. on IoT-based Plug-Mate provide a holistic, non-intrusive system for plug load 

management, a less-research area, achieving significant energy savings (51.7%) and high user satisfaction 

through advanced automation (Tekler et al., 2022). Kula et al.'s standardized laboratory methodology for 

occupancy sensor reliability is crucial and exceptional, providing a uniform testing method for data integrity 

vital for all occupancy-driven controls (Kula et al., 2023). However, the reviewed articles revealed several 

methodological limitations, which can be summarized thus: 

• Data gaps: Many studies were based on simulated or hypothetical data rather than actual energy 

consumption records. 

• Limited generalizability: Many research focused on specific building types or environmental condition, 

narrowing their broader applicability. 

• Technical constraints: Automated occupancy sensing systems were often obstructed by reliance on 

user devices or detection errors. 

• Scalability challenges: Manual system calibrations and computational complexities presented major 

obstacles to real-world implementation and scalability. 

These constraints underscore the need for more robust and generalizable research methodologies to 

advance the field. 

4. Findings on the questions 

This section comprehensively presents the findings on the research questions. To achieve this, the 52 articles 

were critically evaluated to identified and understand the effective way to articulate the response to the 

research questions. 

4.1. Findings on the first question: Understanding occupant behavior and patterns in higher 

education institutions 

Building management systems (BMS) have increasingly integrated sophisticated approaches to learn and 

adapt to occupant activities and behaviors, moving beyond static schedules to dynamic, data-driven controls 
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(Jafarinejad et al., 2019; Kula et al., 2023; Winkler et al., 2020). This is crucial for optimizing energy efficiency 

and maintaining comfort in higher education buildings. Key approaches employed to collect data to learn 

occupant behavior and patterns include: 

Occupancy sensing technologies: 

• Dedicated sensors such as infrared video image sensors, thermal and vibration sensors, CO2 sensors, 

and PIR sensors are used to extract real-time occupant presence, counts, and locations (Alfalah et al., 

2023; Allab et al., 2017; Bourdeau et al., 2018; Clausen et al., 2021; Merabtine et al., 2018; Rajabi et al., 

2022; F. Sangogboye et al., 2018; Winkler et al., 2020; Zou et al., 2017). These provide high-accuracy 

data, up to 98% for infrared video image sensors (Alfalah et al., 2023) . BMS data from HVAC systems, 

such as damper or reheat valve positions and CO2 levels, can act as "occupancy indicative sensors" to 

infer presence (Ardakanian et al., 2018; Merabtine et al., 2018). 

• Wi-Fi Infrastructure: A widely adopted non-intrusive method leverages existing Wi-Fi networks to 

detect, count, and track occupants (Alfalah et al., 2023; Auquilla et al., 2016; Bellala et al., 2017; 

Heidarinejad et al., 2017; Jagadeesh Simma et al., 2019; Markus et al., 2021; Rafsanjani et al., 2018; Zou 

et al., 2017). This provides fine-grained, real-time data on presence and movement (Rafsanjani et al., 

2018), addressing limitations of traditional sensors. Systems like WinOSS have demonstrated high 

detection accuracy, such as 98.85% (Zou et al., 2017). Wi-Fi connection/disconnection events can be 

viable indicators of energy load changes (Rafsanjani et al., 2018). Studies show Wi-Fi based occupancy 

schedules can lead to at least 50% savings in HVAC energy consumption over static schedules. However, 

privacy concerns exist with MAC (Media Access Control) addresses (Jagadeesh Simma et al., 2019). CO2 

sensors are also used to infer occupancy levels for ventilation control (Matthew et al., 2021; Rajabi et 

al., 2022). 

• Other Sensors: Wired network connections can provide fine-grained, cube-level occupancy 

information (Bellala et al., 2017). Methods based on computer interactions (e.g., network traffic) are 

also utilized (Auquilla et al., 2016). Door Access Systems (DAS) requiring swipe cards, these systems 

can provide accessibility to occupancy patterns in specific facilities like offices and labs (Heidarinejad 

et al., 2017). 

Advanced analytical techniques: 

• Machine Learning (ML) and Deep Learning (DL) models such as Artificial Neural Networks (ANN), Long 

Short-Term Memory (LSTM), Extreme Gradient Boosting (XgBoost), Support Vector Regression (SVR), 

and Random Forest (RF) are extensively used for load forecasting, occupancy prediction, and 

identifying complex non-linear building behaviors (Jafarinejad et al., 2019; Khalil et al., 2021; 

Mortazavigazar et al., 2021; Rafiq et al., 2024; Ramli et al., 2024). Multi-label classification (MLC) is 

used for predicting room occupancy (F. C. Sangogboye et al., 2016). Hidden Markov Models (HMMs) 

are employed for unsupervised occupancy estimation from network data (Bellala et al., 2017). Support 

Vector Machines (SVM) show robust performance in occupancy prediction (Bellala et al., 2017; F. C. 

Sangogboye et al., 2016). Techniques like Principal Component Analysis (PCA) and K-means clustering 

are used to classify ACU (Air Conditioning Unit) power consumption and identify distinct operational 

patterns based on variables like temperature, humidity, and occupancy (Brucal et al., 2025). K-means 

groups raw occupancy data into cohesive patterns and profiles, identifying influential drivers like 
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academic terms or examination periods in universities (Alfalah et al., 2023). Model Predictive Control 

(MPC) systems integrate real-time and predicted occupancy, weather forecasts, and building models 

to optimize HVAC operations, allowing for pre-conditioning and significant energy savings (Clausen et 

al., 2021; Merema et al., 2022; Winkler et al., 2020). Blended Markov Chains (BMC) are used for 

occupancy prediction within MPC frameworks (Winkler et al., 2020). 

• Sensor fusion techniques, such as those in the MODES framework, combine inputs from multiple sensor 

types (e.g., thermal and vibration) to achieve more accurate occupancy estimations, improving 

individual sensor deficiencies (Kula et al., 2023; Rajabi et al., 2022). Non-Intrusive Occupant Load 

Monitoring (NIOLM); A novel approach that couples Wi-Fi-based occupancy data with power changes 

in aggregated building-wide energy data. It uses density-based clustering (DBSCAN) and discriminant 

analysis (QDA) to disaggregate energy consumption down to individual occupant behaviors 

(Rafsanjani et al., 2018). 

• Agent-Based Systems and Fuzzy Logic: These intelligent systems are employed to dynamically 

schedule HVAC and other systems, adapting to conditions like weather and university event schedules 

(Al-Daraiseh et al., 2015; Xie et al., 2018). Fuzzy Logic (FL), often enhanced by Rough Set Theory (RST), 

forms the basis of intelligent control systems that automatically adjust ACU setpoints. These systems 

utilize real-time indoor and outdoor environmental and room occupancy data. FL simulates human 

thought processes to effectively manage intricate scenarios, including fluctuating occupancy levels. 

RST specifically streamlines fuzzy control by eliminating rule redundancy (e.g., a 99.72% reduction in 

instructional rooms), substantially enhancing computational speed (96.40% faster) and precision in 

ACU setpoint optimization. This has demonstrated daily average power savings of 25.56%. Occupancy 

is a critical input, classified into categories such as "empty," "low," or "maximum capacity," alongside 

personal factors like clothing insulation and metabolic rate (Brucal et al., 2025). 

• Statistical Analysis: Regression and correlation analyses are performed on historical data, including 

electricity use and occupancy, to identify patterns (Bourdeau et al., 2018; Kim et al., 2017). This helps 

link electricity consumption to occupancy (Kim et al., 2017). 

• Building Energy Models (BEM/BPS): These models, such as those developed in EnergyPlus or TRNSYS, 

are calibrated using derived occupancy and plug-load schedules to accurately predict energy 

performance (Allab et al., 2017; Kim et al., 2017; F. Sangogboye et al., 2018; J. Yang et al., 2016). 

• Transfer learning approaches improve occupancy prediction accuracy even with limited historical data 

by leveraging knowledge from similar rooms or buildings (Khalil et al., 2021). 

Passive data sources: 

Data like classroom timetables, administrative work hours, and special events provide advance 

information on occupant levels, locations, and numbers, enabling efficient HVAC scheduling 

without real-time sensing infrastructure (Taheri et al., 2024; Wilson et al., 2022). This allows 

for a lower setpoint temperature during non-occupancy periods, with preheating initiated to 

reach a comfortable level by the time occupants arrive, thereby optimizing energy consumption 

without compromising comfort. This approach has led to a 14.98% reduction in energy 

consumption in some case studies (Taheri et al., 2024). 
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Survey data sources: 

Post-Occupancy Evaluation (POE) surveys and Computerized Maintenance Management 

System (CMMS) data (complaint logs) gather subjective feedback on comfort and identify 

anomalies or behavioral patterns affecting building performance (Day et al., 2020; Elbellahy et 

al., 2024; Hossain et al., 2020; Markus et al., 2021). The photovoice method allows occupants to 

visually document experiences (Day et al., 2020). Thermal comfort surveys are used to gather 

subjective feedback from occupants, aligning with models such as Fanger’s predicted mean vote 

(PMV), to refine control strategies based on actual comfort preferences (Brucal et al., 2025). 

These diverse approaches signify a comprehensive shift towards dynamic and data-driven 

energy management. 

Finally, BMS and associated technologies have made significant strides in optimizing operations to account 

for occupant activities and behaviors, particularly within higher educational buildings. These methods 

collectively enable BMS to dynamically respond to occupant presence, optimizing energy use and enhancing 

indoor environmental quality (Franco et al., 2021; Tekler et al., 2022). This evolution moves beyond rigid, rule-

based systems to more dynamic and adaptive approaches. They provide a deeper understanding of dynamic 

occupancy patterns, enabling more optimized energy management and improved comfort in buildings (Al-

Daraiseh et al., 2015; Heidarinejad et al., 2017; Michailidis et al., 2018; Xie et al., 2018; Zhou et al., 2017). 

4.2. Findings on the second question: Specific occupant activities that have the most significant 

negative impact on energy efficiency in higher education institutions 

Buildings are significant global energy consumers (Clausen et al., 2021; Rafiq et al., 2024). A large share of this 

consumption is due to Heating, Ventilation, and Air Conditioning (HVAC) systems (Merema et al., 2022; Rafiq 

et al., 2024; Rajabi et al., 2022; Winkler et al., 2020). Inefficient operation, often linked to occupant activities 

and behaviors, contributes to significant energy waste. For example, a considerable amount of total energy 

consumption is wasted in commercial buildings (Rafiq et al., 2024). Certain occupant activities and 

corresponding operational challenges that adversely affect energy efficiency include: 

HVAC setpoint adjustments and fixed schedules: 

Occupants and building managers frequently adjust HVAC and setpoints of air conditioning 

(AC) systems or maintain temperatures higher than recommended, with a 1°C increase 

potentially raising energy consumption by approximately 12% (Brucal et al., 2025; 

Heidarinejad et al., 2017; Merabtine et al., 2018). Many buildings operate HVAC systems on 

fixed, static schedules irrespective of actual occupancy, leading to unnecessary conditioning of 

empty or partially occupied spaces (Ardakanian et al., 2018; Bellala et al., 2017; Kula et al., 

2023; Wei et al., 2018; Wilson et al., 2022; Winkler et al., 2020). This means spaces are 

conditioned and ventilated even when unoccupied or sparsely populated (Kula et al., 2023; 

Wilson et al., 2022; Winkler et al., 2020). ACUs are major energy consumers in educational 

buildings, accounting for approximately 47% of the total energy consumption (Taheri et al., 

2024). Occupant thermal comfort preferences directly influence ACU settings, with demands 

for cooler conditions leading to increased energy use (Brucal et al., 2025). For instance, a 
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university's lecture halls might have significantly reduced usage in summer, but HVAC 

continues to operate based on general schedules. This approach can waste 15-30% of the 

energy produced by HVAC systems (Wilson et al., 2022). This "naive" scheduling is less efficient 

than dynamically adjusting to actual occupancy patterns (Ardakanian et al., 2018). 

Furthermore, energy management systems often keep air handling units (AHUs) running 24/7 

or during weekends to ensure comfort for the start of the week, leading to wasted electricity 

(Allab et al., 2017; Merabtine et al., 2018). 

Equipment and lighting mismanagement: 

Occupants commonly leave equipment and lights on during unoccupied periods, contributing 

significantly to energy waste which largely affecting electricity consumption in educational 

buildings and schools (Azar and Al Amoodi, 2016; Bourdeau et al., 2018; Safwat et al., 2024). 

Miscellaneous electric loads (MELs), though individually small, collectively account for up to 

36% of commercial building energy consumption (Rafsanjani et al., 2018). After-hours use of 

equipment and lighting is particularly impactful in buildings with longer unoccupied periods, 

such as classrooms during evenings and weekends (Azar and Al Amoodi, 2016). Inefficient 

auxiliary devices and high standby energy use for lighting control systems can also negate 

potential energy savings, with standby power accounting for up to 30-55% of total lighting 

energy (Gentile and Dubois, 2017). A primary factor is the prolonged operation of electronic 

devices, particularly personal computers (PCs). For instance, studies indicate that PC power 

consumption accounts for the highest percentage (42.71%) in offices. Simulation laboratories, 

in particular, consume more energy (41.14%) than other labs due to PCs being left working for 

extended periods. This direct occupant behavior results in substantial energy wastage (Safwat 

et al., 2024). 

Adaptive behaviors for thermal comfort: 

To achieve comfort, occupants may engage in energy-intensive behaviors. This includes 

opening windows and doors during cold weather to compensate for overheating or poor air 

quality, which increases heating and ventilation loads (Allab et al., 2017; Bourdeau et al., 2018; 

Jafarinejad et al., 2019; Markus et al., 2021; Merabtine et al., 2018). Additionally, the use of 

personal electric heaters to counter under-heating in offices or achieve desired warmer 

temperatures can drastically increase energy consumption (Allab et al., 2017; Bourdeau et al., 

2018). 

Occupancy variability: 

Educational and university buildings, especially those with mixed-use spaces like laboratories 

and classrooms, exhibit highly dynamic and unpredictable occupancy patterns (Al-Daraiseh et 

al., 2015; Bourdeau et al., 2018; Kim et al., 2017; Leong and Essah, 2017). This variability 

challenges traditional building management systems that rely on simplistic occupancy models, 

making optimal energy consumption difficult without adaptive control strategies (Al-Daraiseh 
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et al., 2015). Effective energy management requires accounting for these occupant behaviors 

and integrating adaptive control mechanisms that respond to real-time occupancy (Azar and Al 

Amoodi, 2016; Bellala et al., 2017; Kim et al., 2017). 

Overall, the dynamic and often unpredictable nature of occupant presence and behavior directly influences 

building load and energy consumption, demonstrating a positive correlation between occupancy and total 

building load (Alfalah et al., 2023; Rafiq et al., 2024). The unmanaged or excessive use of these resources, 

influenced by occupant behavior and the inherent energy needs of modern educational facilities, leads to 

notable energy inefficiencies. A lack of understanding or control over building interfaces by occupants can also 

lead to suboptimal energy use (Day et al., 2020). Addressing these occupant-related inefficiencies is crucial for 

achieving better energy management and cost reduction (Alfalah et al., 2023; Rafiq et al., 2024). 

4.3. Findings on the third question: Categories of challenges induced by occupant activities on 

energy utilization in higher education buildings 

Optimizing energy utilization in higher education buildings faces significant challenges rooted in occupant 

activities and behaviors. These challenges can be categorized as follows: 

Unpredictable and highly variable occupancy: 

Occupancy is inherently variant and dynamic, differing greatly over space and time 

(Ardakanian et al., 2018; Z. Yang et al., 2015). Educational and university buildings (resembling 

small cities), with their diverse users (teachers, researchers, students) and continually 

changing activities and population densities, present particularly complex occupancy models 

(Al-Daraiseh et al., 2015; Leong and Essah, 2017; Safwat et al., 2024; J. Yang et al., 2016). 

Occupancy levels are dynamic, changing daily and seasonally, such as classrooms being 50% 

occupied on weekdays but 0% on weekends, or full load during academic terms versus 10% 

during breaks (Brucal et al., 2025; Safwat et al., 2024). This unpredictability makes it difficult 

to maintain comfort while optimizing energy over long periods (Z. Yang et al., 2015). 

Direct and indirect energy impacts of occupant actions: 

Occupant-Driven Internal Heat Gains and Loads: Occupants directly contribute to heat gain 

through metabolism and activity (influenced by activity levels and clothing), and are associated 

with the use of building systems like lighting and miscellaneous electric loads (MELs) (Azar and 

Al Amoodi, 2016; Brucal et al., 2025; Safwat et al., 2024; Taheri et al., 2024; Z. Yang et al., 2015). 

MELs, though individually small, constitute a substantial 36% of commercial building energy 

consumption (Rafsanjani et al., 2018). For internally-load dominated buildings like offices and 

research laboratories, these internal loads, including lighting and receptacle use, are the 

primary drivers of energy consumption, rather than outdoor conditions (Heidarinejad et al., 

2017). The increasing need for energy on campuses is also driven by technology advances and 

energy-consuming laboratory and computing facilities. A significant challenge is occupant 

behavior, such as leaving PCs working for extended periods, which substantially increases 

energy consumption in areas like simulation labs (Taheri et al., 2024). Lighting and plug loads 
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are also highly influenced by occupant behavior (Alfalah et al., 2023; Rafiq et al., 2024; Safwat 

et al., 2024; Taheri et al., 2024). The growing reliance on electronic devices and other plug loads, 

contributing up to 30% of total energy in offices, often leads to unmanaged energy use (Tekler 

et al., 2022). Furthermore, efforts to manage plug loads face challenges due to user resistance 

and perceived inconvenience of active management, resulting in low system adoption and 

limited savings (Tekler et al., 2022). 

Lack of real-time occupancy information: 

A critical limitation is the absence of real-time and predictive occupant information for Building 

Management Systems (BMS) (Rajabi et al., 2022; Winkler et al., 2020). Many conventional 

sensing methods, such as motion sensors, struggle to provide accurate occupant counts (only 

presence) or differentiate between absence of movement and absence of people (Wilson et al., 

2022). This deficiency prevents dynamic adjustment of ventilation rates and optimal thermal 

conditioning (Winkler et al., 2020). Therefore, accurately learning and defining occupant 

behavior for energy models becomes challenging. While some studies use Wi-Fi infrastructure 

or specialized sensors (PIR, CO2) to detect and track occupants (Bellala et al., 2017; Rafsanjani 

et al., 2018; Zou et al., 2017), these methods can be costly, intrusive, or limited in granularity 

and accuracy (Bellala et al., 2017; Kim et al., 2017; Merema et al., 2019; Simma et al., 2019; 

Wilson et al., 2022). Privacy concerns associated with some data collection methods, such as 

Wi-Fi MAC addresses, also hinder widespread implementation (Jagadeesh Simma et al., 2019; 

Simma et al., 2019). Obtaining precise, disaggregated data to link energy consumption to 

individual occupant behaviors remains a gap (Rafsanjani et al., 2018). Additionally, data-driven 

models require large quantities of high-quality, high temporal resolution data (Markus et al., 

2021), which can be difficult to obtain, especially for new or newly monitored buildings with 

limited historical data (Khalil et al., 2021). 

Building-specific factors and inflexibility: 

The multifunctional nature of educational and institutional buildings, with varying schedules 

for teaching, research, and administration, adds complexity to energy management (Gui et al., 

2021). Building design can also create issues; for example, increased insulation levels, while 

beneficial, can raise the risk of overheating if not coupled with adaptive controls (Merema et 

al., 2022). Lastly, a disconnection often exists between occupants and building interfaces, with 

users being unaware of optimal operational practices or lacking direct control over comfort 

settings (Day et al., 2020). 

Over-provisioning and static scheduling: 

A primary challenge stems from over-provisioning of services based on static, predetermined 

schedules, which assume maximum occupancy irrespective of actual building usage (Kula et al., 

2023; Wilson et al., 2022). This leads to unnecessary energy consumption from HVAC and 

lighting systems, which account for a significant portion of a building's total energy use (Kula 
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et al., 2023; Simma et al., 2019). For instance, buildings are often over-ventilated because real-

time Air Handling Unit (AHU) data is not adequately assessed (Matthew et al., 2021), and spaces 

are conditioned even when unoccupied (Rajabi et al., 2022; Winkler et al., 2020). Conventional 

pre-timed HVAC scheduling often leads to wasted energy during unoccupied periods. 

Furthermore, traditional occupancy sensors can misdetect seated individuals, falsely 

identifying rooms as unoccupied and leading to unnecessary cooling reductions (Brucal et al., 

2025). 

Complexity of occupant-centric control implementation: 

Integrating occupant behavior into HVAC control strategies is challenging. Implementing real-

time, adaptive control systems that account for variable occupancies can lead to a high 

computational burden due to large rule sets, resulting in extended processing times and 

reduced efficiency. Scaling such systems, especially those relying on wearable sensors, is also 

difficult for large populations. Many existing demand control strategies also fail to consider the 

influence of occupancy, focusing only on indoor temperatures (Brucal et al., 2025).  

Lack of Incentive: In commercial and institutional settings, occupants often lack a direct 

financial incentive to conserve energy, as they are not personally liable for the energy 

consumed, leading to unnoticed inefficiencies (Wei et al., 2018). These occupant-induced 

factors underscore the need for sophisticated data collection and management to inform 

energy-saving measures (Safwat et al., 2024). 

4.4. Findings on the first question: How energy-efficient practices are promoted in higher 

educational institutions? 

Energy-efficient practices can significantly promoted through occupant engagement and awareness 

programmes, although challenges related to user burden and the "rebound effect" necessitates thoughtful 

implementation. Occupant activities and behaviors are crucial factors influencing energy consumption in 

buildings, impacting everything from HVAC systems to lighting and plug loads. Key ways in which occupant 

engagement programmes promote energy efficiency include: 

Increasing awareness and understanding: 

Initiatives like the "Green School Initiative" explicitly aim to promote sustainable practices, 

including energy efficiency, by providing training and support to teachers and staff to 

implement energy-efficient measures. A broader building energy efficiency roadmap for Egypt 

also emphasizes the need for "training and awareness, incentives and penalties" to encourage 

the adoption of energy-efficient practices. It is directly stated that "Educational building staff 

and students should practice energy saving operation" (Azar and Al Amoodi, 2016; Safwat et 

al., 2024). This is because occupants tend to behave more efficiently when informed about their 

energy consumption and the savings achieved (Utami et al., 2018). Educational workshops and 

real-time data visualization tools can effectively enhance occupants' understanding of invisible 

thermal data and their environmental impact, fostering a more positive perception of 
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sustainability. For instance, at the University of Westminster, educational workshops 

leveraging IoT sensors and BEMS successfully raised students' awareness of environmental and 

behavioral influences on energy saving (Azar and Al Amoodi, 2016; Hossain et al., 2020). 

Similarly, at Najran University, suggestions from building users for energy efficiency included 

"continuous awareness of the importance of practicing energy conservation" and converting 

control systems to "intelligent operation systems" that offer individual adjustment options 

(Elbellahy et al., 2024). 

Personalized Recommendations: Actively involving occupants through "move 

recommendations" (suggesting a move to a more energy-efficient space) or "shift schedule 

recommendations" (adjusting arrival/departure times) can significantly enhance energy 

savings. These personalized recommendations, derived from historical location data and 

simulations, can contribute 25% more energy savings than traditional occupancy-based HVAC 

management alone (Wei et al., 2018). 

Providing control and feedback: 

• When occupants are given the ability to manually control or override building interfaces (such as blinds, 

HVAC, windows, thermostats, or electric lighting), they tend to report increased environmental 

comfort and satisfaction. This sense of control is vital because a disconnection often exists between 

occupants and building interfaces, where users might be unaware of optimal practices or lack direct 

control over comfort settings (Day et al., 2020; Elbellahy et al., 2024; Winkler et al., 2020). Systems that 

integrate "human-in-the-loop" comfort feedback, allowing users to vote on their thermal preferences 

in real-time, have demonstrated significant reductions in occupant dissatisfaction while also achieving 

energy cost decreases. For example, the OFFICE framework, which combined real-time and predictive 

occupancy with human comfort feedback, reduced dissatisfaction from 25% to 0% and decreased 

energy costs by over 10% in a LEED Gold building (Winkler et al., 2020). Similarly, the Plug-Mate 

system for plug loads found that the control strategy offering the most user input achieved the highest 

satisfaction, even with a slight reduction in energy savings compared to full automation. This highlights 

the need for an optimal balance between automation and user control to encourage long-term 

engagement and energy savings (Tekler et al., 2022). More so, novel approaches like Non-Intrusive 

Occupant Load Monitoring (NIOLM) provide granular, occupant-level data, enabling tailored feedback 

and better evaluation of behavioral interventions (Rafsanjani et al., 2018). This addresses the common 

issue of occupants lacking direct financial incentive to conserve energy (Wei et al., 2018). 

• Addressing Behavioral Interventions: While direct behavioral intervention strategies, such as eco-

feedback and email reminders aim to encourage energy-saving habits, their long-term effectiveness 

can be uncertain due to reliance on voluntary change or perceived inconvenience. This highlights the 

need for intelligent systems that reduce user burden while maintaining user control, striking an 

"optimal balance between automation and user control" to ensure higher user satisfaction and long-

term engagement. The Plug-Mate system, for instance, found that the control strategy offering the most 

user control had the highest satisfaction score, despite a slight decrease in energy savings (Tekler et al., 

2022). 
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• Thermal comfort surveys actively involve occupants by collecting their subjective feedback on Air 

Conditioning Unit (ACU) setpoints. This data, combined with objective environmental monitoring, 

helps refine control strategies to balance occupant comfort with energy efficiency (Brucal et al., 2025). 

This shows how direct occupant input can lead to more efficient system operation. The integration of 

occupant behaviors into HVAC control strategies is crucial. Fuzzy logic-based control systems, 

sometimes augmented by mobile applications and Predicted Mean Vote (PMV)-based feedback, have 

been developed to enhance user interactions and improve thermal comfort efficiency, leading to energy 

savings. This demonstrates how technology can facilitate occupant engagement for improved energy 

performance. Awareness of how these systems work and the importance of adhering to schedules 

could be part of occupant engagement. Machine Learning models also use "occupancy" as a critical 

input for energy prediction, underscoring its impact on consumption (Brucal et al., 2025; Ramli et al., 

2024). 

Analyzing energy use and understanding its characteristics which inherently includes occupant patterns is 

the foundation for introducing control measures and improving energy efficiency. For instance, studies have 

identified lighting, air conditioning, and water heating as major energy consumers in schools, areas where 

targeted occupant awareness campaigns could encourage more efficient practices (Safwat et al., 2024). 

However, a key challenge remains the "intention gap," where environmental awareness doesn't always 

translate into action, highlighting a need for further research in this area (Wei et al., 2018). Therefore, by 

making occupants aware of their energy consumption patterns and providing them with tools or knowledge 

to influence these patterns, significant progress can be made towards more sustainable and efficient building 

operations (Safwat et al., 2024). 

5. Discussion 

This systematic literature review, encompassing 52 articles, reveals the pivotal role of dynamic occupant 

behavior in energy consumption within higher education buildings. The review highlights a significant shift 

towards smart building technologies IoT, BEMS, and advanced machine learning (ML/DL) for understanding 

and adapting to occupant patterns. Various sensing technologies, from infrared to Wi-Fi infrastructure, are 

now instrumental in gathering real-time data on occupancy, movement, and activities, enabling more precise 

HVAC and lighting control. However, the unpredictability of occupant behavior remains a primary challenge, 

contributing to a persistent "performance gap" between predicted and actual energy use. Human actions like 

overriding controls or leaving windows open can negate technological efficiencies. Addressing this requires a 

blend of sophisticated automation and active occupant engagement. Programs promoting awareness, 

gamification, and incentives, alongside "human-in-the-loop" systems, are crucial for fostering energy-efficient 

practices and balancing comfort with conservation, ultimately aiming for sustainable building operations. 

5.1. Limitations 

This study followed the PRISMA framework and applied systematic search and screening procedures. However, 

certain methodological elements required in systematic reviews remain incomplete. In particular, no formal 

risk of bias assessment or quality appraisal of included studies was performed, and the synthesis is descriptive 

in parts. These omissions were due to the large number of heterogeneous studies reviewed. Future systematic 
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reviews with narrower scope or fewer studies should incorporate these components to provide deeper critical 

evaluation. Therefore, while our study meets key aspects of a systematic review, the above gaps should be 

considered as limitations. 

6. Conclusion and future agenda 

The systematic review underscores the critical role of dynamic occupant behavior in achieving efficient energy 

utilization in higher education buildings. While significant advancements in sensing technologies (e.g., infrared, 

Wi-Fi), data analytics (e.g., ML, DL, MPC), and smart building systems have provided powerful tools for 

understanding and adapting to occupant activities, a substantial "performance gap" persists. This gap is 

primarily driven by the inherent unpredictability of human behavior, the lack of standardized data collection 

and analysis methodologies, and challenges related to occupant acceptance and user burden with automated 

systems. Effective energy management necessitates a holistic approach that not only leverages advanced 

technologies but also prioritizes active occupant engagement, awareness, and the integration of user feedback 

into building control strategies. The shift towards "human-in-the-loop" systems and non-intrusive monitoring 

approaches represents a promising direction for balancing energy efficiency with occupant comfort and 

satisfaction. 

This review also highlighted that occupant activities—particularly HVAC setpoint adjustments, fixed 

scheduling, and equipment mismanagement—are central drivers of inefficiency. While progress has been 

made, many studies rely heavily on simulation and short-term data, with little focus on student 

accommodation, which remains a significant research gap. 

6.1. Future agenda 

Based on the identified gaps, emerging trends, and methodological considerations, the future agenda for 

research on energy utilization in higher education buildings should focus on: 

• Standardizing Data Protocols and Addressing Privacy: Developing standardized methods for occupant 

data collection and tackling privacy concerns related to sensing technologies in higher education 

buildings. 

• Advanced Modeling and User Integration: Advancing AI/ML models for predicting complex occupant 

behaviors especially in student accommodations and seamlessly integrating occupant feedback into 

building management systems. 

• Context-Specific Energy Dynamics: Conducting long-term empirical studies on occupant activities and 

investigating how academic calendars, seasonal variations, and institutional schedules influence 

energy consumption patterns in higher education. 

• Cost-Benefit Analysis and Scalability: Performing detailed cost-benefit analyses of smart building 

technologies and researching the scalability of solutions across diverse educational settings. 

• Strengthening Methodological Rigor in Reviews: Future systematic reviews should incorporate formal 

risk of bias assessment, systematic study quality appraisal, and deeper synthesis of findings. These 

steps will enhance the reliability, comparability, and generalizability of evidence for policy and practice 

while also strengthening the systematic review methodology in this field. 
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