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Abstract

This systematic literature review examines the impact of occupant activities and patterns on efficient energy
utilization in higher education buildings. The building sector is a major global energy consumer, with education
institutions contributing significantly due to their diverse functions and occupancy variability. Traditional building
control systems, relying on fixed schedules, often lead to substantial energy waste as they do not account for actual
occupancy. This paper synthesizes literature from 2015-2025, using PRISMA guidelines and Scopus as a primary
database, ultimately analyzing 52 eligible articles. It identifies various approaches for learning occupant behavior,
including dedicated sensors, Wi-Fi infrastructure, and advanced analytical techniques like machine learning and
model predictive control. Key occupant activities negatively impacting energy efficiency include Heating, Ventilation,
and Air Conditioning (HVAC) setpoint adjustments, fixed operating schedules and mismanagement of equipment and
lighting. These behaviors result in significant energy waste, with HVAC systems and electronic devices being major
contributors. The study highlights a research gap in understanding occupant activity and energy efficiency in student
accommodation. Addressing these dynamic and often unpredictable occupant behaviors is crucial for achieving
sustainable energy management in university campuses.
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1. Introduction

The building sector is a significant global energy consumer, accounting for approximately 40% of total
worldwide energy consumption and contributing to 30% or more of global CO2 emissions (Gui et al,, 2021;
Kula et al,, 2023; Rafiq et al., 2024; Safwat et al., 2024). This demand is continuously increasing due to factors
such as growing populations and rising standards of living, which exacerbate challenges related to depleting
fossil fuels, climate change, and sustainability (Jafarinejad et al., 2019; Rafiq et al., 2024).

Within the commercial building sector, education buildings are substantial energy users, representing a
considerable contribution to overall energy consumption (Brucal et al., 2025; Elbellahy et al., 2024; Kula et al.,
2023; Safwat et al., 2024; Taheri et al., 2024). Universities, in particular, function akin to "small cities" due to
their size, diverse populations, and varied activities, encompassing laboratories, lecture halls, libraries, and
administrative offices, all with distinct energy needs (Brucal et al., 2025; Gui et al,, 2021; Safwat et al., 2024).
These complexities often lead to energy being wasted. For instance, a report indicates that 30% of total energy
consumption in commercial buildings is wasted (Rafiq et al., 2024).

A crucial, yet often overlooked, factor influencing building energy consumption is the presence and
behavior of occupants (Leong and Essah, 2017; Michailidis et al., 2018; Rafiq et al., 2024; Zou et al,, 2017).
Systems like HVAC and lighting are major energy consumers, accounting for nearly 60% of all energy used in
commercial buildings (Chaer et al., 2025; Kula et al., 2023; Rafiq et al., 2024). While most traditional building
control systems rely on fixed, predetermined occupancy schedules, these schedules frequently differ
significantly from actual occupancy patterns, resulting in substantial and unnecessary energy consumption
(Ben-Nakhi and Mahmoud, 2017; Jagadeesh Simma et al., 2019; Zou et al., 2017). For example, studies have
shown that average occupancy rates in university offices are rarely above 60% of maximum capacity, yet HVAC
systems often follow static schedules, leading to considerable energy waste (Kula et al., 2023).

The emergence of smart buildings, enabled by Internet of Things (IoT) devices, automation systems, and
Building Energy Management Systems (BEMS), offers a pathway to more efficient energy management through
the availability of real-time data (Bellala et al., 2017; Hossain et al., 2020; Jagadeesh Simma et al., 2019; Simma
et al, 2019; Wagiman et al., 2020). Modern machine learning (ML) algorithms and artificial neural networks
(ANN) can process this data to forecast and schedule building loads effectively, leading to optimized energy
utilization and cost reduction (Jafarinejad et al., 2019; Rafiq et al., 2024; Ramli et al., 2024). Incorporating real-
time occupancy information allows for dynamic adjustment of systems like HVAC and lighting, which can
significantly enhance energy efficiency and occupant comfort (Jagadeesh Simma et al., 2019; Kula et al., 2023;
Rafiq etal., 2024). Studies have demonstrated that integrating real-time occupancy data can lead to substantial
energy savings, with some approaches achieving up to 77% energy savings while improving comfort (Rajabi
et al,, 2022). For instance, WiFi-based occupancy schedules have resulted in at least 50% savings in HVAC
energy consumption over static schedules in institutional buildings (Jagadeesh Simma et al.,, 2019).

Despite the recognized importance of occupant information, a "performance gap" frequently exists between
the predicted and actual energy consumption of buildings (Alfalah et al,, 2023; Kula et al.,, 2023). This gap is
largely attributed to the inadequate consideration of dynamic occupant behavior during the design and
operation phases (Alfalah et al., 2023; Jagadeesh Simma et al., 2019; Kula et al., 2023). While advancements in
data collection (e.g., infrared video image sensors, WiFi networks) are improving the accuracy of occupancy
data (Alfalah et al,, 2023; Kula et al,, 2023; Simma et al., 2019), there remains a lack of comprehensive, long-
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term empirical research and standardized methodologies specifically focused on the impact of occupant
activities on energy utilization in higher education buildings (Alfalah et al., 2023; Hossain et al., 2020). Many
existing studies have concentrated on residential or commercial office buildings, or have been conducted over
shorter durations, limiting their applicability to the unique context of higher education (Alfalah et al., 2023;
Hossain et al,, 2020; J. Yang et al,, 2016).

This systematic review aims to bridge this knowledge gap by comprehensively analyzing and synthesizing
existing literature on the impact of occupant activities on efficient energy utilization in higher education
buildings by putting up the following research questions;

e What approaches are employed to learn occupant behavior and patterns in higher education
institutions?

o  What specific occupant activities have the most significant negative impact on energy efficiency on
buildings in higher education institutions?

e What categories can be used to classify the energy-related challenges resulting from occupant
behaviors?

e How are energy efficient practices and programs promoted in higher education institutions?

Furthermore, by examining various methodologies, findings, and challenges, this review seeks to provide a
holistic understanding of the current state of research, identify key influential factors, and highlight
opportunities for future advancements in achieving sustainable energy management in university and college
campuses worldwide.

2. Methodology

This study was performed to present an understanding of occupant behavior in an academic environment. The
methods and approaches used by researcher to learn and categorize occupant activities, impact on energy
efficiency, and how energy efficient programs are promoted in higher education institutions was emphasized
in the review. The systematic literature review employed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. Scopus search engine was used to collect data covering
2015-2025 for this study, and all selected documents were in English. The search for articles for this study was
conducted on the 18th of June 2025.

The search for relevant articles was executed by exploring the title and keywords sections of the electronic
databases mentioned above. The search strategy involved various combinations of keywords related to
research area, using Boolean operators (“AND” and “OR”) to combine the search terms. The search keywords
used for the literature exploration were occupancy, occupant activities, energy utilization, energy management,
commercial building and educational building. The following search query was used to identify and retrieve
all articles related to the research topic: ("occupancy” OR "occupant activities" AND "energy utilization" OR
"energy management" AND” commercial building" OR “educational building").

Inclusion/exclusion criteria: This review synthesized studies with varying methodologies and standards to
capture the complexity of occupant behavior and energy usage. By examining diverse aspects, including
occupant patterns, energy wastage, data collection technologies, efficient practices, and predictive models, we
gained a deeper understanding of the research landscape and its implications for future research.
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The initial search yielded 263 documents, and for eligibility, studies from 2015 to 2025 were considered,
dropping the documents to 200. Given the rapid evolution of BEMS and predictive modeling, this review
prioritizes recent research (post-2014) to reflect the current state of knowledge on occupant behavior and
energy usage in higher education buildings, ensuring relevance and accuracy. Based on this eligibility, Table 1.
shows documents published by year. Out of the documents published within the study range, 2018 and 2022
recorded 12%; making the both year recording the highest publications. This may indicate a high level of
research activity or significant data gathering. As of the time this search was conducted, the least goes to 2025
followed by 2024 recording 3.5% and 6.5% respectively. Declining effort in this area was recorded from 2023
to date although days are still counting for the year 2025.

Table 1. Documents published by year

Year Number of document published
2015 20
2016 21
2017 19
2018 24
2019 16
2020 17
2021 23
2022 24
2023 16
2024 13
2025 7

The study further investigated the search based on document type. As revealed on the Figure 1., the highest
percentage (49.5%) of number of publication came from journal articles followed by conference papers
(45.0%) and the least was book chapter and conference review. The analysis also revealed that review only
made up 3.5% of the documents, indicating the need for this study (a systematic review).

Conference Revi... (1.0%)
Book Chapter (1.0%)
Review (3.5%) “‘

Conference Pape... (45.0%)

Article (49.5%)

Figure 1. Percentage of document type (source: scopus.com)
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Table 2. Selection and exclusion criteria

Selection criteria Exclusion criteria
Articles published between 2015-2025 Articles published before 2015
Publication in English language Articles not in English language

Research published in academic journals and Review, conference review and book chapter
conference proceedings

Relevance of the title and abstract to occupant Studies outside the scope of education

behavior, occupant activities, energy efficiency, buildings
predictive models, occupancy and data collection
technologies in education buildings.

Studies that were specifically done on higher Studies outside the scope of higher education

education buildings buildings
| Identification of studies via database |
g
=
é Database extraction: Scopus n=263
=
5
= v
—
Records screened on 18th of June 2025 Records excluded: Articles published
(2015-2025) > before2015
n=200 n=63
Records screened .
(Journal and conference papers) Records excluded: Review papers and
Eﬁ n=198 > bookchzapter
- n=
:
5 v
v
Recordsscreened (title and abstract) Records excluded: title outside the
=S > scope of education buildings,
occupantbehavior and energy efficiency
¢ n=41
Records screened (title and abstract:
on education buildings and on high Records excluded: study outside the
education buildings) — scopeof education buildings and
n=67 higher education building
n=105
& A4
=
"Eh Eligible records for the study
a based on higher education buildings
n=>52

Figure 2. PRISMA flow-chat: An illustration of data collection approach

We subjected the remaining articles to a four-stage screening process, beginning with 198 journal and
conference papers. Subsequent review of titles and abstracts narrowed the selection to 157, followed by the
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exclusion of research unrelated to education buildings, leaving 67 articles. Ultimately, only studies focused on
higher education institutions were included, resulting in the 52 eligible articles depicted in the PRISMA flow
chart (Figure 2). This rigorous methodology allowed for precise identification of research gaps and effective
addressing of research questions, yielding a reliable foundation for practical recommendations and future
research directions. Table 2 shows the selection and exclusion criteria in detail.

3. Result and interpretation

This paper systematically analyzed 52 articles, focusing on themes such as occupant activities, comfort,
presence, data collection, sensor technologies, forecasting models, control systems (for occupancy, energy,
HVAC, and other appliances), and loT-based systems. This comprehensive study revealed common research
objectives, methodologies, and experimental setups. The objectives across all 52 reviewed articles can be
summarized into five key areas:

o Tounderstand occupancy, their activities, patterns and comfort in higher education buildings.

e To study different methods of occupancy presence and data collection technologies.

e Tounderstudy control technologies and their impact on energy efficiency in higher education buildings.

e To simulate an energy efficient building without compromising occupant comfort and lastly,

o To test and identify the best performing models to predict occupant presence and electricity
consumption.

The reviewed studies primarily leveraged simulation software, forecasting models, [oT and sensor
technologies, questionnaires (as used in (Allab etal., 2017)), energy meters, and smart technologies to conduct
their experiments. For example, several articles ((Ascione et al., 2015; F. Sangogboye et al., 2018; J. Yang et al,,
2016)) utilized EnergyPlus software to model educational buildings, aiming to optimize energy use. Various
sensors were deployed to record occupant presence and environmental data. Furthermore, machine learning,
deep learning, and hybrid models were commonly employed across experiments to predict both occupant
presence and energy consumption. Among the 52 articles analyzed, the experimental locations varied, with
offices (38.33%), classrooms/lecture halls (33.33%), and laboratories (16.67%) being the most frequently
cited. A smaller portion (11.67%) involved ambiguous locations. It's noteworthy that, to our knowledge, none
of the studies explicitly focused on student accommodation or hostels.

Student accommodation has a unique energy profile due to its high density, varied occupancy, and shared
facilities. Unlike typical residential buildings, it has higher baseline energy use around the clock, worsened by
student habits like leaving lights on and a general lack of energy awareness (Alamel, 2021; Ayeleru etal., 2017;
Jamaludin et al.,, 2017). This suggests a significant research gap concerning the impact of occupant activity on
energy efficiency in student housing within higher education buildings. Additionally, Heating, Ventilation, and
Air Conditioning (HVAC) systems were more frequently investigated compared to other appliances and plug
loads in the reviewed articles.

3.1. An overview on the methodologies

The articles employ diverse methodologies. Some focus on data-driven models for load forecasting and
optimization, using hybrid ML (LSTM, XgBoost, Random Forest, Linear Regression) (Rafiq et al., 2024), fuzzy
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logic with Rough Set Theory (Brucal et al., 2025), or various ML algorithms (ANN, DNN, SVR) (Ramli et al,,
2024). Others utilize building energy modeling with tools like TRNSYS18 or EnergyPlus to evaluate retrofits,
green roofs, or specific scenarios (Aparicio-Fernandez et al., 2023; Ascione et al,, 2015; J. Yang et al,, 2016; Z.
Yang et al., 2015). A significant segment involves IoT and sensing technologies for real-time environmental
monitoring (Hossain et al.,, 2020), non-intrusive occupancy detection via WiFi (Zou et al., 2017), or Bluetooth
Low Energy (BLE) for plug load management (Tekler et al., 2022). Methodologies also include experimental
research with Post-Occupancy Evaluation (POE) surveys (Elbellahy et al., 2024; Hossain et al., 2020), regulated
laboratory testing for sensor reliability (Kula et al., 2023), and data collection protocols where actual data is
scarce (Safwat et al.,, 2024).

However, among the methodologies synthesized, Rafiq et al.'s hybrid Machine Learning for load prediction
stands out for combining different algorithms (LSTM, XgBoost, RF, LR) utilizing real-time occupant information
for high accuracy, directly impacting energy optimization and cost savings (Rafiq et al., 2024). Meanwhile, the
research did by Tekler et al. on loT-based Plug-Mate provide a holistic, non-intrusive system for plug load
management, a less-research area, achieving significant energy savings (51.7%) and high user satisfaction
through advanced automation (Tekler et al, 2022). Kula et al.'s standardized laboratory methodology for
occupancy sensor reliability is crucial and exceptional, providing a uniform testing method for data integrity
vital for all occupancy-driven controls (Kula et al., 2023). However, the reviewed articles revealed several
methodological limitations, which can be summarized thus:

e Data gaps: Many studies were based on simulated or hypothetical data rather than actual energy
consumption records.

e Limited generalizability: Many research focused on specific building types or environmental condition,
narrowing their broader applicability.

e Technical constraints: Automated occupancy sensing systems were often obstructed by reliance on
user devices or detection errors.

e Scalability challenges: Manual system calibrations and computational complexities presented major
obstacles to real-world implementation and scalability.

These constraints underscore the need for more robust and generalizable research methodologies to
advance the field.

4. Findings on the questions

This section comprehensively presents the findings on the research questions. To achieve this, the 52 articles
were critically evaluated to identified and understand the effective way to articulate the response to the
research questions.

4.1. Findings on the first question: Understanding occupant behavior and patterns in higher
education institutions

Building management systems (BMS) have increasingly integrated sophisticated approaches to learn and
adapt to occupant activities and behaviors, moving beyond static schedules to dynamic, data-driven controls
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(Jafarinejad et al., 2019; Kula et al., 2023; Winkler et al., 2020). This is crucial for optimizing energy efficiency
and maintaining comfort in higher education buildings. Key approaches employed to collect data to learn
occupant behavior and patterns include:

Occupancy sensing technologies:

Dedicated sensors such as infrared video image sensors, thermal and vibration sensors, CO2 sensors,
and PIR sensors are used to extract real-time occupant presence, counts, and locations (Alfalah et al,,
2023; Allab et al., 2017; Bourdeau et al., 2018; Clausen et al., 2021; Merabtine et al., 2018; Rajabi et al.,
2022; F. Sangogboye et al., 2018; Winkler et al., 2020; Zou et al., 2017). These provide high-accuracy
data, up to 98% for infrared video image sensors (Alfalah et al., 2023) . BMS data from HVAC systems,
such as damper or reheat valve positions and CO2 levels, can act as "occupancy indicative sensors” to
infer presence (Ardakanian et al., 2018; Merabtine et al., 2018).

Wi-Fi Infrastructure: A widely adopted non-intrusive method leverages existing Wi-Fi networks to
detect, count, and track occupants (Alfalah et al., 2023; Auquilla et al.,, 2016; Bellala et al,, 2017;
Heidarinejad et al., 2017; Jagadeesh Simma et al., 2019; Markus et al., 2021; Rafsanjani et al., 2018; Zou
et al.,, 2017). This provides fine-grained, real-time data on presence and movement (Rafsanjani et al.,
2018), addressing limitations of traditional sensors. Systems like WinOSS have demonstrated high
detection accuracy, such as 98.85% (Zou et al., 2017). Wi-Fi connection/disconnection events can be
viable indicators of energy load changes (Rafsanjani et al., 2018). Studies show Wi-Fi based occupancy
schedules can lead to atleast 50% savings in HVAC energy consumption over static schedules. However,
privacy concerns exist with MAC (Media Access Control) addresses (Jagadeesh Simma et al., 2019). CO-
sensors are also used to infer occupancy levels for ventilation control (Matthew et al., 2021; Rajabi et
al,, 2022).

Other Sensors: Wired network connections can provide fine-grained, cube-level occupancy
information (Bellala et al., 2017). Methods based on computer interactions (e.g., network traffic) are
also utilized (Auquilla et al., 2016). Door Access Systems (DAS) requiring swipe cards, these systems
can provide accessibility to occupancy patterns in specific facilities like offices and labs (Heidarinejad
etal, 2017).

Advanced analytical techniques:

Machine Learning (ML) and Deep Learning (DL) models such as Artificial Neural Networks (ANN), Long
Short-Term Memory (LSTM), Extreme Gradient Boosting (XgBoost), Support Vector Regression (SVR),
and Random Forest (RF) are extensively used for load forecasting, occupancy prediction, and
identifying complex non-linear building behaviors (Jafarinejad et al, 2019; Khalil et al, 2021;
Mortazavigazar et al., 2021; Rafiq et al., 2024; Ramli et al., 2024). Multi-label classification (MLC) is
used for predicting room occupancy (F. C. Sangogboye et al., 2016). Hidden Markov Models (HMMs)
are employed for unsupervised occupancy estimation from network data (Bellala et al., 2017). Support
Vector Machines (SVM) show robust performance in occupancy prediction (Bellala et al., 2017; F. C.
Sangogboye et al., 2016). Techniques like Principal Component Analysis (PCA) and K-means clustering
are used to classify ACU (Air Conditioning Unit) power consumption and identify distinct operational
patterns based on variables like temperature, humidity, and occupancy (Brucal et al., 2025). K-means
groups raw occupancy data into cohesive patterns and profiles, identifying influential drivers like
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academic terms or examination periods in universities (Alfalah et al., 2023). Model Predictive Control
(MPC) systems integrate real-time and predicted occupancy, weather forecasts, and building models
to optimize HVAC operations, allowing for pre-conditioning and significant energy savings (Clausen et
al, 2021; Merema et al,, 2022; Winkler et al., 2020). Blended Markov Chains (BMC) are used for
occupancy prediction within MPC frameworks (Winkler et al., 2020).

Sensor fusion techniques, such as those in the MODES framework, combine inputs from multiple sensor
types (e.g., thermal and vibration) to achieve more accurate occupancy estimations, improving
individual sensor deficiencies (Kula et al., 2023; Rajabi et al., 2022). Non-Intrusive Occupant Load
Monitoring (NIOLM); A novel approach that couples Wi-Fi-based occupancy data with power changes
in aggregated building-wide energy data. It uses density-based clustering (DBSCAN) and discriminant
analysis (QDA) to disaggregate energy consumption down to individual occupant behaviors
(Rafsanjani et al., 2018).

Agent-Based Systems and Fuzzy Logic: These intelligent systems are employed to dynamically
schedule HVAC and other systems, adapting to conditions like weather and university event schedules
(Al-Daraiseh et al., 2015; Xie et al., 2018). Fuzzy Logic (FL), often enhanced by Rough Set Theory (RST),
forms the basis of intelligent control systems that automatically adjust ACU setpoints. These systems
utilize real-time indoor and outdoor environmental and room occupancy data. FL simulates human
thought processes to effectively manage intricate scenarios, including fluctuating occupancy levels.
RST specifically streamlines fuzzy control by eliminating rule redundancy (e.g., a 99.72% reduction in
instructional rooms), substantially enhancing computational speed (96.40% faster) and precision in
ACU setpoint optimization. This has demonstrated daily average power savings of 25.56%. Occupancy
is a critical input, classified into categories such as "empty," "low," or "maximum capacity," alongside
personal factors like clothing insulation and metabolic rate (Brucal et al., 2025).

Statistical Analysis: Regression and correlation analyses are performed on historical data, including
electricity use and occupancy, to identify patterns (Bourdeau et al., 2018; Kim et al., 2017). This helps
link electricity consumption to occupancy (Kim et al., 2017).

Building Energy Models (BEM/BPS): These models, such as those developed in EnergyPlus or TRNSYS,
are calibrated using derived occupancy and plug-load schedules to accurately predict energy
performance (Allab et al.,, 2017; Kim et al.,, 2017; F. Sangogboye et al.,, 2018; ]. Yang et al., 2016).

Transfer learning approaches improve occupancy prediction accuracy even with limited historical data
by leveraging knowledge from similar rooms or buildings (Khalil et al., 2021).

Passive data sources:

484

Data like classroom timetables, administrative work hours, and special events provide advance
information on occupant levels, locations, and numbers, enabling efficient HVAC scheduling
without real-time sensing infrastructure (Taheri et al., 2024; Wilson et al.,, 2022). This allows
for a lower setpoint temperature during non-occupancy periods, with preheating initiated to
reach a comfortable level by the time occupants arrive, thereby optimizing energy consumption
without compromising comfort. This approach has led to a 14.98% reduction in energy
consumption in some case studies (Taheri et al., 2024).
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Survey data sources:

Post-Occupancy Evaluation (POE) surveys and Computerized Maintenance Management
System (CMMS) data (complaint logs) gather subjective feedback on comfort and identify
anomalies or behavioral patterns affecting building performance (Day et al., 2020; Elbellahy et
al,, 2024; Hossain et al,, 2020; Markus et al., 2021). The photovoice method allows occupants to
visually document experiences (Day et al., 2020). Thermal comfort surveys are used to gather
subjective feedback from occupants, aligning with models such as Fanger’s predicted mean vote
(PMV), to refine control strategies based on actual comfort preferences (Brucal et al., 2025).
These diverse approaches signify a comprehensive shift towards dynamic and data-driven
energy management.

Finally, BMS and associated technologies have made significant strides in optimizing operations to account
for occupant activities and behaviors, particularly within higher educational buildings. These methods
collectively enable BMS to dynamically respond to occupant presence, optimizing energy use and enhancing
indoor environmental quality (Franco etal., 2021; Tekler et al., 2022). This evolution moves beyond rigid, rule-
based systems to more dynamic and adaptive approaches. They provide a deeper understanding of dynamic
occupancy patterns, enabling more optimized energy management and improved comfort in buildings (Al-
Daraiseh et al,, 2015; Heidarinejad et al,, 2017; Michailidis et al., 2018; Xie et al., 2018; Zhou et al,, 2017).

4.2. Findings on the second question: Specific occupant activities that have the most significant
negative impact on energy efficiency in higher education institutions

Buildings are significant global energy consumers (Clausen et al., 2021; Rafiq et al., 2024). A large share of this
consumption is due to Heating, Ventilation, and Air Conditioning (HVAC) systems (Merema et al., 2022; Rafiq
et al.,, 2024; Rajabi et al,, 2022; Winkler et al.,, 2020). Inefficient operation, often linked to occupant activities
and behaviors, contributes to significant energy waste. For example, a considerable amount of total energy
consumption is wasted in commercial buildings (Rafiq et al, 2024). Certain occupant activities and
corresponding operational challenges that adversely affect energy efficiency include:

HVAC setpoint adjustments and fixed schedules:

Occupants and building managers frequently adjust HVAC and setpoints of air conditioning
(AC) systems or maintain temperatures higher than recommended, with a 1°C increase
potentially raising energy consumption by approximately 12% (Brucal et al, 2025;
Heidarinejad et al., 2017; Merabtine et al., 2018). Many buildings operate HVAC systems on
fixed, static schedules irrespective of actual occupancy, leading to unnecessary conditioning of
empty or partially occupied spaces (Ardakanian et al., 2018; Bellala et al., 2017; Kula et al,,
2023; Wei et al,, 2018; Wilson et al., 2022; Winkler et al., 2020). This means spaces are
conditioned and ventilated even when unoccupied or sparsely populated (Kula et al., 2023;
Wilson et al.,, 2022; Winkler et al,, 2020). ACUs are major energy consumers in educational
buildings, accounting for approximately 47% of the total energy consumption (Taheri et al,,
2024). Occupant thermal comfort preferences directly influence ACU settings, with demands
for cooler conditions leading to increased energy use (Brucal et al.,, 2025). For instance, a
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university's lecture halls might have significantly reduced usage in summer, but HVAC
continues to operate based on general schedules. This approach can waste 15-30% of the
energy produced by HVAC systems (Wilson et al., 2022). This "naive" scheduling is less efficient
than dynamically adjusting to actual occupancy patterns (Ardakanian et al, 2018).
Furthermore, energy management systems often keep air handling units (AHUs) running 24 /7
or during weekends to ensure comfort for the start of the week, leading to wasted electricity
(Allab et al,, 2017; Merabtine et al., 2018).

Equipment and lighting mismanagement:

Occupants commonly leave equipment and lights on during unoccupied periods, contributing
significantly to energy waste which largely affecting electricity consumption in educational
buildings and schools (Azar and Al Amoodi, 2016; Bourdeau et al., 2018; Safwat et al., 2024).
Miscellaneous electric loads (MELs), though individually small, collectively account for up to
36% of commercial building energy consumption (Rafsanjani et al., 2018). After-hours use of
equipment and lighting is particularly impactful in buildings with longer unoccupied periods,
such as classrooms during evenings and weekends (Azar and Al Amoodi, 2016). Inefficient
auxiliary devices and high standby energy use for lighting control systems can also negate
potential energy savings, with standby power accounting for up to 30-55% of total lighting
energy (Gentile and Dubois, 2017). A primary factor is the prolonged operation of electronic
devices, particularly personal computers (PCs). For instance, studies indicate that PC power
consumption accounts for the highest percentage (42.71%) in offices. Simulation laboratories,
in particular, consume more energy (41.14%) than other labs due to PCs being left working for
extended periods. This direct occupant behavior results in substantial energy wastage (Safwat
etal, 2024).

Adaptive behaviors for thermal comfort:

To achieve comfort, occupants may engage in energy-intensive behaviors. This includes
opening windows and doors during cold weather to compensate for overheating or poor air
quality, which increases heating and ventilation loads (Allab et al., 2017; Bourdeau et al., 2018;
Jafarinejad et al., 2019; Markus et al,, 2021; Merabtine et al., 2018). Additionally, the use of
personal electric heaters to counter under-heating in offices or achieve desired warmer
temperatures can drastically increase energy consumption (Allab et al.,, 2017; Bourdeau et al,,
2018).

Occupancy variability:

Educational and university buildings, especially those with mixed-use spaces like laboratories
and classrooms, exhibit highly dynamic and unpredictable occupancy patterns (Al-Daraiseh et
al., 2015; Bourdeau et al., 2018; Kim et al.,, 2017; Leong and Essah, 2017). This variability
challenges traditional building management systems that rely on simplistic occupancy models,
making optimal energy consumption difficult without adaptive control strategies (Al-Daraiseh
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et al, 2015). Effective energy management requires accounting for these occupant behaviors
and integrating adaptive control mechanisms that respond to real-time occupancy (Azar and Al
Amoodi, 2016; Bellala et al., 2017; Kim et al., 2017).

Overall, the dynamic and often unpredictable nature of occupant presence and behavior directly influences
building load and energy consumption, demonstrating a positive correlation between occupancy and total
building load (Alfalah et al., 2023; Rafiq et al,, 2024). The unmanaged or excessive use of these resources,
influenced by occupant behavior and the inherent energy needs of modern educational facilities, leads to
notable energy inefficiencies. A lack of understanding or control over building interfaces by occupants can also
lead to suboptimal energy use (Day et al., 2020). Addressing these occupant-related inefficiencies is crucial for
achieving better energy management and cost reduction (Alfalah et al., 2023; Rafiq et al., 2024).

4.3. Findings on the third question: Categories of challenges induced by occupant activities on
energy utilization in higher education buildings

Optimizing energy utilization in higher education buildings faces significant challenges rooted in occupant
activities and behaviors. These challenges can be categorized as follows:

Unpredictable and highly variable occupancy:

Occupancy is inherently variant and dynamic, differing greatly over space and time
(Ardakanian etal., 2018; Z. Yang et al., 2015). Educational and university buildings (resembling
small cities), with their diverse users (teachers, researchers, students) and continually
changing activities and population densities, present particularly complex occupancy models
(Al-Daraiseh et al., 2015; Leong and Essah, 2017; Safwat et al., 2024; ]. Yang et al,, 2016).
Occupancy levels are dynamic, changing daily and seasonally, such as classrooms being 50%
occupied on weekdays but 0% on weekends, or full load during academic terms versus 10%
during breaks (Brucal et al,, 2025; Safwat et al., 2024). This unpredictability makes it difficult
to maintain comfort while optimizing energy over long periods (Z. Yang et al,, 2015).

Direct and indirect energy impacts of occupant actions:

Occupant-Driven Internal Heat Gains and Loads: Occupants directly contribute to heat gain
through metabolism and activity (influenced by activity levels and clothing), and are associated
with the use of building systems like lighting and miscellaneous electric loads (MELs) (Azar and
Al Amoodi, 2016; Brucal et al,, 2025; Safwat et al,, 2024; Taheri et al., 2024; Z. Yang et al.,, 2015).
MELs, though individually small, constitute a substantial 36% of commercial building energy
consumption (Rafsanjani et al., 2018). For internally-load dominated buildings like offices and
research laboratories, these internal loads, including lighting and receptacle use, are the
primary drivers of energy consumption, rather than outdoor conditions (Heidarinejad et al.,
2017). The increasing need for energy on campuses is also driven by technology advances and
energy-consuming laboratory and computing facilities. A significant challenge is occupant
behavior, such as leaving PCs working for extended periods, which substantially increases
energy consumption in areas like simulation labs (Taheri et al., 2024). Lighting and plug loads
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are also highly influenced by occupant behavior (Alfalah et al., 2023; Rafiq et al., 2024; Safwat
etal., 2024; Taheri etal., 2024). The growing reliance on electronic devices and other plug loads,
contributing up to 30% of total energy in offices, often leads to unmanaged energy use (Tekler
et al.,, 2022). Furthermore, efforts to manage plug loads face challenges due to user resistance
and perceived inconvenience of active management, resulting in low system adoption and
limited savings (Tekler et al., 2022).

Lack of real-time occupancy information:

A critical limitation is the absence of real-time and predictive occupant information for Building
Management Systems (BMS) (Rajabi et al., 2022; Winkler et al.,, 2020). Many conventional
sensing methods, such as motion sensors, struggle to provide accurate occupant counts (only
presence) or differentiate between absence of movement and absence of people (Wilson et al,,
2022). This deficiency prevents dynamic adjustment of ventilation rates and optimal thermal
conditioning (Winkler et al.,, 2020). Therefore, accurately learning and defining occupant
behavior for energy models becomes challenging. While some studies use Wi-Fi infrastructure
or specialized sensors (PIR, CO2) to detect and track occupants (Bellala et al., 2017; Rafsanjani
etal,, 2018; Zou et al,, 2017), these methods can be costly, intrusive, or limited in granularity
and accuracy (Bellala et al., 2017; Kim et al,, 2017; Merema et al,, 2019; Simma et al., 2019;
Wilson et al., 2022). Privacy concerns associated with some data collection methods, such as
Wi-Fi MAC addresses, also hinder widespread implementation (Jagadeesh Simma et al., 2019;
Simma et al, 2019). Obtaining precise, disaggregated data to link energy consumption to
individual occupant behaviors remains a gap (Rafsanjani et al., 2018). Additionally, data-driven
models require large quantities of high-quality, high temporal resolution data (Markus et al.,
2021), which can be difficult to obtain, especially for new or newly monitored buildings with
limited historical data (Khalil et al., 2021).

Building-specific factors and inflexibility:

The multifunctional nature of educational and institutional buildings, with varying schedules
for teaching, research, and administration, adds complexity to energy management (Gui et al,,
2021). Building design can also create issues; for example, increased insulation levels, while
beneficial, can raise the risk of overheating if not coupled with adaptive controls (Merema et
al,, 2022). Lastly, a disconnection often exists between occupants and building interfaces, with
users being unaware of optimal operational practices or lacking direct control over comfort
settings (Day et al., 2020).

Over-provisioning and static scheduling:

A primary challenge stems from over-provisioning of services based on static, predetermined
schedules, which assume maximum occupancy irrespective of actual building usage (Kula et al.,
2023; Wilson et al., 2022). This leads to unnecessary energy consumption from HVAC and
lighting systems, which account for a significant portion of a building's total energy use (Kula
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etal, 2023; Simma et al., 2019). For instance, buildings are often over-ventilated because real-
time Air Handling Unit (AHU) data is not adequately assessed (Matthew et al., 2021), and spaces
are conditioned even when unoccupied (Rajabi et al., 2022; Winkler et al., 2020). Conventional
pre-timed HVAC scheduling often leads to wasted energy during unoccupied periods.
Furthermore, traditional occupancy sensors can misdetect seated individuals, falsely
identifying rooms as unoccupied and leading to unnecessary cooling reductions (Brucal et al.,
2025).

Complexity of occupant-centric control implementation:

Integrating occupant behavior into HVAC control strategies is challenging. Implementing real-
time, adaptive control systems that account for variable occupancies can lead to a high
computational burden due to large rule sets, resulting in extended processing times and
reduced efficiency. Scaling such systems, especially those relying on wearable sensors, is also
difficult for large populations. Many existing demand control strategies also fail to consider the
influence of occupancy, focusing only on indoor temperatures (Brucal et al., 2025).

Lack of Incentive: In commercial and institutional settings, occupants often lack a direct
financial incentive to conserve energy, as they are not personally liable for the energy
consumed, leading to unnoticed inefficiencies (Wei et al., 2018). These occupant-induced
factors underscore the need for sophisticated data collection and management to inform
energy-saving measures (Safwat et al., 2024).

4.4. Findings on the first question: How energy-efficient practices are promoted in higher
educational institutions?

Energy-efficient practices can significantly promoted through occupant engagement and awareness
programmes, although challenges related to user burden and the "rebound effect" necessitates thoughtful
implementation. Occupant activities and behaviors are crucial factors influencing energy consumption in
buildings, impacting everything from HVAC systems to lighting and plug loads. Key ways in which occupant
engagement programmes promote energy efficiency include:

Increasing awareness and understanding:

Initiatives like the "Green School Initiative" explicitly aim to promote sustainable practices,
including energy efficiency, by providing training and support to teachers and staff to
implement energy-efficient measures. A broader building energy efficiency roadmap for Egypt
also emphasizes the need for "training and awareness, incentives and penalties" to encourage
the adoption of energy-efficient practices. It is directly stated that "Educational building staff
and students should practice energy saving operation” (Azar and Al Amoodi, 2016; Safwat et
al., 2024). This is because occupants tend to behave more efficiently when informed about their
energy consumption and the savings achieved (Utami et al., 2018). Educational workshops and
real-time data visualization tools can effectively enhance occupants' understanding of invisible
thermal data and their environmental impact, fostering a more positive perception of
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sustainability. For instance, at the University of Westminster, educational workshops
leveraging loT sensors and BEMS successfully raised students' awareness of environmental and
behavioral influences on energy saving (Azar and Al Amoodi, 2016; Hossain et al., 2020).
Similarly, at Najran University, suggestions from building users for energy efficiency included
"continuous awareness of the importance of practicing energy conservation" and converting
control systems to "intelligent operation systems" that offer individual adjustment options
(Elbellahy et al., 2024).

Personalized Recommendations: Actively involving occupants through "move
recommendations” (suggesting a move to a more energy-efficient space) or "shift schedule
recommendations” (adjusting arrival/departure times) can significantly enhance energy
savings. These personalized recommendations, derived from historical location data and
simulations, can contribute 25% more energy savings than traditional occupancy-based HVAC
management alone (Wei et al., 2018).

Providing control and feedback:
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When occupants are given the ability to manually control or override building interfaces (such as blinds,
HVAC, windows, thermostats, or electric lighting), they tend to report increased environmental
comfort and satisfaction. This sense of control is vital because a disconnection often exists between
occupants and building interfaces, where users might be unaware of optimal practices or lack direct
control over comfort settings (Day et al., 2020; Elbellahy et al., 2024; Winkler et al., 2020). Systems that
integrate "human-in-the-loop" comfort feedback, allowing users to vote on their thermal preferences
in real-time, have demonstrated significant reductions in occupant dissatisfaction while also achieving
energy cost decreases. For example, the OFFICE framework, which combined real-time and predictive
occupancy with human comfort feedback, reduced dissatisfaction from 25% to 0% and decreased
energy costs by over 10% in a LEED Gold building (Winkler et al,, 2020). Similarly, the Plug-Mate
system for plug loads found that the control strategy offering the most user input achieved the highest
satisfaction, even with a slight reduction in energy savings compared to full automation. This highlights
the need for an optimal balance between automation and user control to encourage long-term
engagement and energy savings (Tekler et al., 2022). More so, novel approaches like Non-Intrusive
Occupant Load Monitoring (NIOLM) provide granular, occupant-level data, enabling tailored feedback
and better evaluation of behavioral interventions (Rafsanjani et al., 2018). This addresses the common
issue of occupants lacking direct financial incentive to conserve energy (Wei et al., 2018).

Addressing Behavioral Interventions: While direct behavioral intervention strategies, such as eco-
feedback and email reminders aim to encourage energy-saving habits, their long-term effectiveness
can be uncertain due to reliance on voluntary change or perceived inconvenience. This highlights the
need for intelligent systems that reduce user burden while maintaining user control, striking an
"optimal balance between automation and user control” to ensure higher user satisfaction and long-
term engagement. The Plug-Mate system, for instance, found that the control strategy offering the most
user control had the highest satisfaction score, despite a slight decrease in energy savings (Tekler et al.,
2022).
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e Thermal comfort surveys actively involve occupants by collecting their subjective feedback on Air
Conditioning Unit (ACU) setpoints. This data, combined with objective environmental monitoring,
helps refine control strategies to balance occupant comfort with energy efficiency (Brucal et al., 2025).
This shows how direct occupant input can lead to more efficient system operation. The integration of
occupant behaviors into HVAC control strategies is crucial. Fuzzy logic-based control systems,
sometimes augmented by mobile applications and Predicted Mean Vote (PMV)-based feedback, have
been developed to enhance user interactions and improve thermal comfort efficiency, leading to energy
savings. This demonstrates how technology can facilitate occupant engagement for improved energy
performance. Awareness of how these systems work and the importance of adhering to schedules
could be part of occupant engagement. Machine Learning models also use "occupancy" as a critical
input for energy prediction, underscoring its impact on consumption (Brucal et al., 2025; Ramli et al,,
2024).

Analyzing energy use and understanding its characteristics which inherently includes occupant patterns is
the foundation for introducing control measures and improving energy efficiency. For instance, studies have
identified lighting, air conditioning, and water heating as major energy consumers in schools, areas where
targeted occupant awareness campaigns could encourage more efficient practices (Safwat et al., 2024).
However, a key challenge remains the "intention gap," where environmental awareness doesn't always
translate into action, highlighting a need for further research in this area (Wei et al., 2018). Therefore, by
making occupants aware of their energy consumption patterns and providing them with tools or knowledge
to influence these patterns, significant progress can be made towards more sustainable and efficient building
operations (Safwat et al., 2024).

5. Discussion

This systematic literature review, encompassing 52 articles, reveals the pivotal role of dynamic occupant
behavior in energy consumption within higher education buildings. The review highlights a significant shift
towards smart building technologies IoT, BEMS, and advanced machine learning (ML/DL) for understanding
and adapting to occupant patterns. Various sensing technologies, from infrared to Wi-Fi infrastructure, are
now instrumental in gathering real-time data on occupancy, movement, and activities, enabling more precise
HVAC and lighting control. However, the unpredictability of occupant behavior remains a primary challenge,
contributing to a persistent "performance gap" between predicted and actual energy use. Human actions like
overriding controls or leaving windows open can negate technological efficiencies. Addressing this requires a
blend of sophisticated automation and active occupant engagement. Programs promoting awareness,
gamification, and incentives, alongside "human-in-the-loop" systems, are crucial for fostering energy-efficient
practices and balancing comfort with conservation, ultimately aiming for sustainable building operations.

5.1. Limitations

This study followed the PRISMA framework and applied systematic search and screening procedures. However,
certain methodological elements required in systematic reviews remain incomplete. In particular, no formal
risk of bias assessment or quality appraisal of included studies was performed, and the synthesis is descriptive
in parts. These omissions were due to the large number of heterogeneous studies reviewed. Future systematic
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reviews with narrower scope or fewer studies should incorporate these components to provide deeper critical
evaluation. Therefore, while our study meets key aspects of a systematic review, the above gaps should be
considered as limitations.

6. Conclusion and future agenda

The systematic review underscores the critical role of dynamic occupant behavior in achieving efficient energy
utilization in higher education buildings. While significant advancements in sensing technologies (e.g., infrared,
Wi-Fi), data analytics (e.g., ML, DL, MPC), and smart building systems have provided powerful tools for
understanding and adapting to occupant activities, a substantial "performance gap" persists. This gap is
primarily driven by the inherent unpredictability of human behavior, the lack of standardized data collection
and analysis methodologies, and challenges related to occupant acceptance and user burden with automated
systems. Effective energy management necessitates a holistic approach that not only leverages advanced
technologies but also prioritizes active occupant engagement, awareness, and the integration of user feedback
into building control strategies. The shift towards "human-in-the-loop" systems and non-intrusive monitoring
approaches represents a promising direction for balancing energy efficiency with occupant comfort and
satisfaction.

This review also highlighted that occupant activities—particularly HVAC setpoint adjustments, fixed
scheduling, and equipment mismanagement—are central drivers of inefficiency. While progress has been
made, many studies rely heavily on simulation and short-term data, with little focus on student
accommodation, which remains a significant research gap.

6.1. Future agenda

Based on the identified gaps, emerging trends, and methodological considerations, the future agenda for
research on energy utilization in higher education buildings should focus on:

e Standardizing Data Protocols and Addressing Privacy: Developing standardized methods for occupant
data collection and tackling privacy concerns related to sensing technologies in higher education
buildings.

e Advanced Modeling and User Integration: Advancing AI/ML models for predicting complex occupant
behaviors especially in student accommodations and seamlessly integrating occupant feedback into
building management systems.

e Context-Specific Energy Dynamics: Conducting long-term empirical studies on occupant activities and
investigating how academic calendars, seasonal variations, and institutional schedules influence
energy consumption patterns in higher education.

e (Cost-Benefit Analysis and Scalability: Performing detailed cost-benefit analyses of smart building
technologies and researching the scalability of solutions across diverse educational settings.

e Strengthening Methodological Rigor in Reviews: Future systematic reviews should incorporate formal
risk of bias assessment, systematic study quality appraisal, and deeper synthesis of findings. These
steps will enhance the reliability, comparability, and generalizability of evidence for policy and practice
while also strengthening the systematic review methodology in this field.
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