

International Journal of Development and Sustainability

ISSN: 2186-8662 – www.isdsnet.com/ijds

Volume 14 Number 10 (2025): Pages 789-806

https://doi.org/10.63212/IJDS25052601

Political leadership transitions and infrastructure project completion in Kenya: Evidence from Kiambu and Murang'a counties

Humphrey Mwandawiro Mwambeo *, Samuel Mukiha Karenga

Mount Kenya University, Thika, Kenya

Abstract

Infrastructure projects support local and regional development. The projects are mainly funded by governments, loans or grants. Some projects stall or are terminated prematurely due to different reasons. This study investigated the influence of political leadership transitions on completion rates of infrastructure projects in Kiambu and Murang'a, Kenya. The null hypothesis was that there was no statistically significant relationship between politics and political leadership changes on completion rates of infrastructure projects in Kiambu and Murang'a counties. The target population was 3,475,000 people in the two counties out of which a sample of 400 respondents was selected using Yamane formulae. The sample was split equally and respondents randomly selected in the two counties. The study used mixed methods research technique. It relied on descriptive cross-sectional survey research design for quantitative data collection and analysis. Qualitative data was collected using interviews. Political leadership transitions occurred after five years cycle or in case of demise or recall of elected leaders among other reasons. The study found out that politics and political leadership changes were statistically significant F (2,383) = 7.11 p < 0.05. The null hypothesis was rejected. However, the R2 =0.036, implied a low predictive power. The study recommends enactment of a policy compelling new leaderships to complete former projects prior to initiating new ones.

Keywords: Completion Rates; Infrastructure Projects; Politics; Political Leadership; Development

Published by ISDS LLC, Japan | Copyright © 2025 by the Author(s) | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cite this article as: Mwambeo, H.M. and Karenga, S.M. (2025), "Political leadership transitions and infrastructure project completion in Kenya: Evidence from Kiambu and Murang'a counties", *International Journal of Development and Sustainability*, Vol. 14 No. 10, pp. 789-806.

^{*} Corresponding author. E-mail address: hmwambeo@mku.ac.ke

1. Introduction

Infrastructure projects facilitate growth and development of businesses, communities, nations and regions. The projects range in size and complexity thus requiring different approaches and levels of investments. To achieve their goals, project managers may choose to apply classical project management models that follow a "waterfall" process where advance planning, execution and monitoring are standardized and predictable. Key characteristics of such models are advanced communication of expected results, risk projections and management plans at project inception or planning phase. Agile project management models on the other hand are iterative and test driven where strategies are adopted in response to emerging situations aimed at achieving desired project results (Thesing et al., 2021). Timely reaction to contemporary customer changing needs and requirements require agile project management approach, which offers a lot of flexibility in project management. Hybrid project management approaches mainly enrich the plan-driven process model with agile principles, thereby drawing on strengths of agile and classical models in project management (Prasetya and Pratama, 2021).

In this study, infrastructure projects were considered to be complex technical, economic, financial and legal process consisting of a set of coordinated and controlled activities aimed at completing development of public amenities such as roads, hospitals, schools, street lighting, public offices and stadia among others. The study did not take into consideration the type of project model adopted to deliver the outcomes but assessed whether projects were completed or not and whether there were specific factors that influenced the outcomes. Despite their significance, all projects including infrastructure projects face risks that range from cost overruns, poor quality of materials and lack of cooperation between contractors and the management (Macura et al., 2022). When mechanisms applied to mitigate the risks fail or partially reduce the impact of the risks, project timelines get affected, costs escalate and the final quality may get compromised.

In some instances, the intentions and actions of project managers determine the success or failure of projects. In political situations, politicians who occasionally take over the responsibility of leading development work may deliberately initiate projects with little socio-economic benefits but with immense political mileage for such politicians. The projects are normally initiated using public resources and state officers required to support them or risk retribution from the politicians. Such projects hold very high chances of failure should individual politicians responsible for the projects exit the political stage (Robinson and Torvik, 2005). Such politically motivated projects result in some form of unproductive redistribution, which are politically attractive when politicians find it difficult to make credible promises to supporters. This is so because it allows only specific politicians to credibly promise to build them and thus enter into credible redistribution thus endearing themselves to supporters. The projects which qualify as "white elephants" can be witnessed in many parts of the world including Kenya and Syria. In most cases the projects stall or get delayed indefinitely after taking up a lot of taxpayers' resources (Jaihan and Suman, 2021).

In Kenya, the Standard Newspaper (March 6, 2018) reported that the government of Kenya initiated a raft of projects including aircrafts that couldn't fly to non-existent factories at a cost of KES 10 billion approximately USD 80 Million. The auditor general's report on Kenya's spending has continued to unearth state projects that take up millions of shillings but add no value to the country. It is worth noting that the Construction of Chancery and High Commissioner's Residence in Islamabad, Pakistan, estimated to cost KES 545.8 million, was terminated after three revisions of the cost (https://www.kenyans.co.ke/news/98060-kenya-foreign-

embassy-declared-inhabitable-despite-ksh-5458m-investment-auditor-general). Further, the Lodwar Law Courts construction at a cost of KES 814.9 million stalled when it had reached 27.7% completion. The Kenya Meteorological Department planned to construct a model county office in Embu in 2009 at a sum of Sh11.5 million but the project stalled midway.

By the year 2018, some project agreements worth an estimated KES 5 trillion were signed between counties and foreign entities with little to show, years later. The Governor of Kisii County (Hon. James Ongwae) announced plans to set up a KES 6 billion sugar factory and a Sh150 million avocado factory in Kisii County which never got completed. There was a plan to transform Machakos town into a modern metropolis by 2025 which never materialised https://restofworld.org/2021/the-failed-promise-of-kenyas-smart-city/).

The white elephant projects appear politically rational even when they are socially disastrous. They generate rent that can be redistributed to generate political support. The political nature of creation and location of white elephants suggests that when political power changes hands, old investment projects ought to be terminated and new ones initiated. Such a scenario though beneficial to the political class spells doom to the masses because of wasted opportunities and resources.

In 2009 the Kenya government sought a loan from the Export-Import Bank of China (The China Exim Bank) to widen and improve the 50.4 Km long transport corridor between Nairobi city and Thika town (Bluhm et al., 2025). The road project was intended to reduce traffic congestion as well as travel time between the two towns from three hours to under one hour. The other satellite towns of Kenol, Embu and Nyeri among others were also projected to benefit from the project. The road expansion and improvement project was completed in 2012. Shortly after completion, several socio-economic changes were noted along the transport corridor. Key among the changes was increase in trade between the towns and growth of smaller towns in between the two towns of Thika and Nairobi. Property value increased tenfold, and population increased as immigrants from other places settled along the towns that sprung up. Major transport projects have the potential to decentralise economic activity (Bluhm et al., 2025). In fact, connective infrastructure projects reduce spatial concentration within first-order regions and accelerate the diffusion of economic activity around cities which supports equitable distribution of resources and development (Bluhm et al., 2025). Some scholars opine that developing countries will continue to expand infrastructure projects such as transport, power and telecommunications because of rapid urbanisation and economic growth (Nishitateno, 2024). Such infrastructure projects can be privately financed, or financed through loans and other innovative mechanisms such as public private partnerships (PPPs) and Build Operate and Transfer (BOT).

Infrastructure projects of different sizes are undertaken by local government entities such as counties in Kenya, the national government and companies linked developed economies who occasionally provide loans and funding through official development assistance (ODA). In 2013 for instance, the Japanese government announced the Infrastructure System Overseas Promotion Strategy (ISOPS) to facilitate securing of overseas infrastructure projects worth 30 trillion yen (US\$ 300 billion) by 2020, approximately 6% of Japan's real gross domestic product (GDP), by Japanese firms. In December 2020, ISOPS was renewed, with a new target of 34 trillion yen (US\$ 340 billion) by 2025 (Nishitateno, 2024). However, it's notable that the development assistance from different developed nations is usually tied to national interests. Although it may appear flimsy, the concept of national interest has continued to endure. The intrinsic mutability of the concept of the national interest can be seen reflected in the changing standing of development considerations vis-a-vis foreign policy and commercial objectives (Dawar, 2023). Irrespective of national interests by the supporting nations, they

have been observed to complete projects according to prescribed specifications mainly because they may be interested in projecting a good national image. There is a difference in terms of completion speeds and quality of different projects under local and foreign entities despite claims of adhering to prescribed specifications and standards. In Kenya, there are roads that were build more than 20 years are still in very good state while others that were constructed less than three years ago have seriously deteriorated. This calls into question the monitoring and evaluation mechanisms and ethical standards applied for construction and assessment of different projects.

Scholars such as Chileshe et al., (2020) found out that there were several success factors of infrastructure projects such as acceptance and support by the local community, project technical feasibility, supportive laws, regulations and policies, well organised and committed project team and transparency and equity in the procurement process and lastly proper and efficient training of employees. Other success factors include participatory planning process, supportive government policies and funding process (Onyango and Bwisa, 2017). There are several factors which may lead to projects turning out to be white elephants. The factors that were mostly identified include ineffective planning of project activities, scheduling of work, execution and monitoring and evaluation negatively affects completion rates. Delayed payments for inputs and other technical work. Low profits occasioned by stiff competition in the industry, deliberate diversion of resources to other activities and fraudulent practices and briberies are key barriers to project completion. Politics and other interferences from the political class may seriously affect the speed of projects and their completion (Jaihan and Suman, 2021). Some scholars have argued that stalled projects can be reinvigorated through addressing the shortcomings that led to stalling. However, this is not possible where the projects were designed for specific benefits to individual politicians whose exit from the political arena means no one can proceed with such projects delivering benefits to the community (Gray, 2022).

There are intrinsic and extrinsic factors that may affect a project in terms of quality, cost and completion. Extrinsic factors can be categorized into political, institutional and macro-economic. Political stability ranks highest in the category of politics which implies instability in political environment may seriously affect the speed, quality and completion of the infrastructure projects. This may include changes in the political leadership because different leaders espouse different leadership styles and agenda (Ruiz Díaz, 2020). Institutional factors may range from institutional policy effectiveness which points to the quality and kind of policies espoused and implemented by an institution, control of corruption, regulatory quality and rule of law. Macroeconomic factors on the other hand refer to the domestic and international where fiscal stance, inflation and gross domestic product per capita come into play. Interest rates and terms of trade may also influence the speed and completion rates of infrastructure projects. Intrinsic factors may range from the type of infrastructure project, technology used and the size of the project in terms of cost and scale of construction (Ruiz Díaz, 2020).

Some scholars have established that there are determinants of infrastructure projects completion summarised as funding and resources allocation which include human resource, financial resources, raw materials, and competency of staff engaged in the project execution processes. The personnel should exhibit proper professional and academic qualification, sensitivity to activity turnaround time, accountability in individual and collective actions and responsibility for commissions and omissions (Mokaanomagonya and Otieno, 2019). Further, meaningful and comprehensive stakeholder participation as well as consistent monitoring and evaluation of project activities has a lot of influence on performance and completion rates of

infrastructure projects at local and regional levels (Mokaanomagonya and Otieno, 2019). These views were similar to those of Chileshe et al., (2020) who established that local acceptance and stakeholder engagement held sway in infrastructure projects performance.

The success or failure of a project may vary between individuals and organisations mostly because of varied parameters, views and specific expectations. Project stakeholders may have different backgrounds, different goals and ways of thinking, which are some of the difficulties inherent in the measurement and evaluation of construction projects. Each project participant looks at the project from his or her own perspective and has his or her own criteria for measuring success (Kärnä et al., 2013). This implies that unless the key performance indicators and parameters for measuring success of a project are harmonized amongst different stakeholders, a project may be considered complete and incomplete at the same time by different individuals because they use varied forms and parameters of measurement.

The objective of the study was to determine the influence of politics and changes in political leadership on completion rates of infrastructure projects in Kiambu and Murang'a counties of Kenya. The null hypothesis tested was politics and changes in political leadership do not significantly statistically influence completion rates of infrastructure projects in Murang'a and Kiambu counties of Kenya.

Different studies have explored the topic of political leadership transitions and the effect on projects at local and international stage. However, the studies have not particularly focused on the local administrative units such as the counties. This study has focused on the county level to determine whether there will be any variations between the county level and other levels of the studies already conducted by other researchers.

2. Methodology

The target population was 3,475,000 million people comprising of 2,418,000 people from Kiambu County and 1,057,000 people from Murang'a County. Murang'a County has seven (7) constituencies which are further divided into 35 electoral wards. Kiambu County has twelve (12) constituencies subdivided into 60 electoral wards (GoK, 2019). The sample for qualitative data was purposively selected while that of quantitative data was selected using random sampling techniques. The County Executive Committee Member or his designates in charge of infrastructure from both counties were involved in in-depth interviews. The other officers involved in in-depth interviews were the senior officers within the respective ministries. This is because they are the custodians of all infrastructure information in their respective counties.

The sample for quantitative data was determined using the Yamane formulae. The population of 3,475,000 people was used to obtain the sample.

$$n = \frac{N}{1 + N(e)^2}$$

where e- margin of error, 0.05, N is the total population of 3,475,000 people and n – desired sample size. The sample size obtained was 399.953 which was rounded up to 400 respondents.

The research used descriptive cross-sectional survey research design. Mixed methods were used in the study combining surveys and key informant interviews.

Purposive sampling was utilised for qualitative data collection because only individuals in positions of leadership that allowed them access to specific information on infrastructure projects were targeted. Quantitative data was collected from residents of the two counties of Murang'a and Kiambu using 400 self-administered questionnaires aimed at establishing number and possible reasons for stalled projects in selected counties. A total of 200 respondents were sampled from each of the counties. Qualitative data was collected through interviews and document analysis. Purposively selected respondents were interviewed at their convenience within the study period. Field entry authorization requirements were adhered to thus allowing smooth operation of the research work.

Data were analysed descriptively and inferentially using linear regression analysis. The study used coefficient of determination (r - squared) to assess the strength of the association between the independent variable politics and changes in political leadership and the dependent variable completion rates of infrastructure projects). Testing of the null hypothesis was at 95% confidence level. Multiple linear regression analysis aided analysis of the relationship between independent variable (politics and changes in political leadership) and the dependent variable (completion rates of infrastructure projects). To analyse the relationship, the study used regression formula $Y = a + \beta 1X1 + \beta 2X2 + \Theta$.

The decision rule used was where alpha level (P) \leq 0.05 the null hypothesis was rejected but in cases where alpha level (P) > 0.05 the null hypothesis was not rejected.

In this study, infrastructure projects referred to are large scale undertakings geared towards construction of essential physical systems and structures that support economic and social well-being of society. These may range from construction of classrooms, markets, roads, and portable water and dams or sports facilities among others. Completion of infrastructure projects referred to projects that had completed all expected milestones from start to final stage. Politics referred to the activities related to governance of an area which encompasses decision making, making policies and distributions of resources. Political changes or transitions referred to the change in political leadership after one or more electoral cycles which are typically five years in Kenya. The changes may also occur following demise of elected leader(s), recall of the leaders or incapacitation. The head of state may also cause electoral changes if he directs abrupt end to the term before completion of five years stipulated in the electoral laws in Kenya.

3. Findings of the study

3.1. Response rate

A total of 400 questionnaires were administered and 386 were received back and accepted. This translates to a 96.5% response rate. The high response rate means the respondents did not experience challenges answering the research questions.

3.2. Gender of respondents

The questionnaires were administered to all sampled eligible respondents without bias. The findings on gender were presented on Table 1.

Table 1. Gender of respondents	Table	1.	Gender	of res	pondents
---------------------------------------	--------------	----	--------	--------	----------

Gender	Frequency	Percentage (%)
Male	229	59.3
Female	157	40.7
Total	386	100.0

From the figures in Table 1 there were 229 (59.3%) males and 157 (40.7%) females who responded to the questionnaires. This shows that both genders provided responses to the research questions hence balanced views from both genders. In many instances, men and women express their opinions differently resulting in varied opinions and interpretations. This therefore means that responses from both gender result in balanced perspectives on the issues of interest to the study.

3.3. Respondent's level of education

To understand respondent's level of education, the study asked them to provide information on whether they attended formal school and the highest level of formal schooling attained. The responses received were shown in Table 2.

Table 2. Education levels of respondents

	Level of education	Frequency	Percentage (%)
Valid	Not attended school	6	1.6
	Primary school level	23	6.0
	Secondary school level	103	26.7
	College level	194	50.3
	University level	60	15.5
	Total	386	100.0

Data in Table 2 shows that respondents were fairly well educated evidenced by 194 (50.3) who had attained college level of education while only 6 (1.6%) had no formal education. In total 92.5% of respondents had at least attained secondary school level of education. This clearly indicates that respondents had the capacity to understand research questions. In this case, the responses received were provided by individuals sampled because they did not rely on others to interpret the questions or provide responses.

3.4. Length of time respondents lived in respective counties of Kiambu and Murang'a

In an effort to understand the period respondents lived in the county where they provided responses, they were requested to respond to a question on period spent in the County. The responses were provided in Table 3.

		Frequency	Percentage (%)
Valid	1-5 years	33	8.5
	6-10 years	22	5.7
	11-15 years	26	6.7
	16-20 years	43	11.1
	over 20 years	253	65.5
	Total	377	97.7
Missing	System	9	2.3
	Total	386	100.0

Table 3. Period lived in the county

Data in Table 3 shows that majority of respondents 253 (65.5%) lived in the counties for over 20 years. Only 33 (8.5%) had been in the counties for periods of between 1-5 years. Therefore, respondents had lived in the counties long enough to understand the infrastructure development projects initiated by county and national governments. They also witnessed the projects initiation and completion or failure to complete as planned by at least two administrations considering elections in Kenya are held after every 5 years. Individuals who lived in the respective areas for long had chances of being involved in the implementation process as stakeholders which provided deeper understanding of the projects initiated by different stakeholders in the counties.

3.5. Name of wards where respondents lived

To confirm that respondents were from the two counties of Murang'a and Kiambu, the respondents were requested to name the counties where they lived. The responses were provided in Table 4.

Data in Table 4 shows the wards where respondents resided were within the two counties of Murang'a and Kiambu. Murang'a has a total of 35 wards while Kiambu has a total of 60 wards and cumulatively 95 wards. Each ward is politically led by a Members of County Assembly (MCA) who is a member of the county assembly. County assembly members are normally elected for a renewable period of five (5) years. Data shows that 14 respondents did not indicate their wards of residence. The respondents were drawn from a total of 24 wards from the two counties which was representative of the general condition of the counties. This meant no respondent in the study resided in counties outside Kiambu and Murang'a.

Table 4. County of residence

	Ward	Frequency	Percentage (%)
Valid	Kiambu	56	14.5
	Githunguri township	77	19.9
	Kirigiti	46	11.9
	Ndumberi	34	8.8
	Githiga	6	1.6
	Kiambu town	6	1.6
	Kiambaa	6	1.6
	Biashara	12	3.1
	Juja	12	3.1
	Ikinu	7	1.8
	Karuri	19	4.9
	Riabai	30	7.8
	Ngenu	7	1.8
	Ngoe	6	1.6
	Mang'u	10	2.6
	Gatuanyaga	8	2.1
	Bibirioni	6	1.6
	Tigoni	6	1.6
	Thogoto South	3	.8
	Nyanduma	3	.8
	Kikuyu	3	.8
	Theta	6	1.6
	Gatundu South	3	.8
	Total	372	96.4
Missing	System	14	3.6
	Total	386	100.0

3.6. Knowledge of stalled infrastructure projects

To gauge respondent's knowledge of stalled infrastructure projects in the respective counties, the study required the respondents to answer affirmative or negative to a question that sought to know whether they knew of infrastructure projects that had stalled within the counties. The responses are summarized in Table 5.

		Frequency	Percentage (%)
Valid	Yes	304	78.8
	No	79	20.5
	Total	383	99.2
Missing	System	3	.8
	Total	386	100.0

Table 5. Knowledge of stalled infrastructure projects

Data in Table 5 shows that a total of 304 (78.8%) respondents reported having knowledge of stalled or abandoned infrastructure projects in their respective counties. Only 79 (20.5%) reported having no idea of any stalled or abandoned infrastructure projects in their respective counties. Three respondents (0.8%) did not respond to the question as shown in Table 5. This meant that there were infrastructure projects that had not been completed in the study area, evidenced by 78.8% of respondents who answered in the affirmative.

3.7. List of abandoned or stalled infrastructure projects

The respondents were also requested to list the infrastructure projects they knew of which had been abandoned or stalled. A comprehensive list was provided in Table 6.

		Frequency	Percentage (%)
Valid	Kirigiti stadium started in 2019	18	4.7
	Riabai Ruthimuiri	6	1.6
	Maumau road	12	3.1
	Karatu stadium	9	2.3
	Thika-Kamwangi flyover road	3	.8
	Ngegu primary school field	9	2.3
	Kimbo Matangi road	9	2.3

Table 6. List of Abandoned/stalled infrastructure projects

		Frequency	Percentage (%
	St Joseph Riabai Secondary Field	15	3.9
	Ruthiruini road	9	2.3
	Ndumberi primary School field	6	1.6
	Bibirioni level 4 hospital	9	2.3
	Ngegu police post	12	3.1
	Dagoreti-thogata road	6	1.6
	Ngegu police building	3	.8
	Tigoni sub county hospital	6	1.6
	Township street lighting	3	.8
	Kinyiru stadium	6	1.6
	Muthurwa-Njiku road	11	2.8
	Muchatha market	9	2.3
	Kibathi CBC classroom	6	1.6
	Githiga -Kamotho-Gatina-Ngengi road	7	1.8
	Kamotho Gatina water Project	6	1.6
	Waratho-Ikinu Road	12	3.1
	Githiga -Ngemura road	6	1.6
	Muthurwa - Banana road	3	.8
	Waguthu -Muchatha road	7	1.8
	Muthurwa-Njiku Banana road	6	1.6
	Githunguri level 5 hospital	7	1.8
	Riabai Primary	9	2.3
	Total	230	59.6
Missing	System	156	40.4
	Total	386	100.0

The data in Table 6 shows that at least 230 (59.6%) of respondents identified at least one stalled or abandoned infrastructure project in their respective county. Some projects were identified by multiple respondents for example Kirigit stadium was identified by 18 (4.7%) respondent while St. Joseph Riabai secondary school playground was identified by 15 (3.9(%) respondents. Infrastructure projects that were

identified by multiple respondents appear to be of great interest and significance to many individuals. From the data, there was no project that was only known to one individual because the projects identified by lowest number of respondents was Muthuruwa-banana road, Thika-Kamwangi road flyover, Township Street lighting and Ngegu Police building each with three respondents. Interesting majority of the respondents mentioned roads. Stadia, schools, hospitals etc. showing the importance the community places on such infrastructure. This means that indeed there were infrastructure projects that stalled in the research site. It is important to note that although Dagoreti South is in Nairobi County, the Dagoreti-Thogoto Road extends into Kiambu County through Kikuyu Sub-County. All respondents in this study were from Kiambu and Murang'a Counties.

3.8. Extent to which infrastructure projects were completed

To understand the respondents' views on the extent to which infrastructure projects were completed in the study area, the study asked the question on extent of projects completion. The responses were presented on Table 7.

	Extent of completion	Frequency	Percentage (%)
Valid	A very large extent	78	20.2
	A large extent	66	17.1
	Neutral	100	25.9
	To a little extent	97	25.1
	To a very little extent	45	11.7
	Total	386	100.0

Table 7. Extent to which infrastructure projects were completed

Data from Table 7 shows that a frequency of 100 (25.9%) were neutral on completion rates of infrastructure projects in the study sites. Those respondents did not express their views on completion rates of infrastructure projects. At least 142 (36.8%) respondents thought infrastructure projects completion rates were to a little extent or a very little extent. On the other hand, 144 (37.3%) thought that infrastructure projects were completed to a large extent. This is a scenario of mixed bag where almost the same number of respondents thought the infrastructure projects were completed while a similar percentage thought otherwise. However, given the highest frequency of those who were neutral, it meant that some projects were completed while others faced challenges in completion.

3.9. Politics and completion of infrastructure projects

To understand extent to which politics influenced completion rates of projects, respondents were requested to provide responses on their thoughts on the subject. The findings were reported on Table 8.

		Frequency	Percentage (%)
Valid	A very large extent	204	52.8
	Large extent	100	25.9
	Neutral	30	7.8
	Little extent	21	5.4
	Very little extent	31	8.0
	Total	386	100.0

Table 8. Politics and completion rates of projects

Data in Table 8 shows that most respondents felt that politics influenced completion rates of infrastructure projects in the study sites as evidenced by 304 (78.7%) of respondents while only 52 (13.4%) thought politics had a little influence on infrastructure projects completion. This means that when politics comes into play, then infrastructure projects are more likely to experience challenges in terms of competition.

3.10. Political leadership changes and completion rates of projects

Respondents were asked a question on the election cycles and the extent to which they thought political leadership transitions influenced completion rates of infrastructure projects in their respective wards. Their responses were shown on Table 9.

Frequency Percentage (%) Valid A very large extent 198 51.3 89 A large extent 23.1 Neutral 60 15.5 27 7.0 Little extent Very little extent 12 3.1 386 100.0 Total

Table 9. Political leadership transitions and completion rates of infrastructure projects

Data in Table 9 shows that a big proportion of respondents, 287 (74.4%) thought that to a large extent political leadership changes influenced completion rates of infrastructure projects. Only 39 (10.1%) thought

that such political leadership changes had a little influence on completion rates of infrastructure projects in the study sites.

3.11. Politics and political leadership changes on completion rates of projects in Kiambu and Murang'a Counties

To understand how the politics and political leadership changes influenced completion rates of projects, the study undertook linear regression analysis and the findings presented in Table 10, 11 and 12.

Model R R Square Adjusted R Square Estimate

1 0.190a 0.036 0.031 1.28090

Table 10. Model Summary

	Model	Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	23.441	2	11.720	7.144	0.001b
	Residual	628.385	383	1.641		
	Total	651.826	385			

Table 11. Statistical Significance

Table 10 shows R value of 0.190 which is the coefficient of regression meaning there is a weak positive relationship between politics and political leadership transitions on completion rates of infrastructure projects. The r 2 value of 0.036 means that the changes in political leadership and politics explains 3.6% of the completion of infrastructure projects. Table 11 shows F (2,383) = 7.14 p < 0.05. The findings were statistically significant. Politics and changes in political leadership statistically significantly predicted completion rates of infrastructure projects. However, given the low predictive power of the politics and political leadership transitions $R^2 = 0.036$, it means that politics and political transitions explain a small proportion of infrastructure projects completion rates. Using figures from Table 12, Politics and changes in political leadership can be used to predict completions rates of infrastructure projects using the regression equation Y = 2.855 + 0.239 (Politics) + 0.213 (Political leadership transitions) + Θ .

a. Predictors: (Constant), Extent to which politics influenced completion rates of projects, Extent to which political leadership changes influence completion rates

a. Dependent Variable: To what extent are projects completed

b. Predictors: (Constant), Extent to which politics influences completion rates of projects, Extent to which political leadership changes influence completion rates of infrastructure projects

		Unstandar	dized Coefficients	Standardized Coefficients	_	
Model		B Std. Error		Beta	T	Sig.
1	(Constant)	2.855	0.136		21.054	0.000
	Extent to which politics influenced completion rates of infrastructure projects	0.239	0.065	0.228	3.667	0.000
	Extent to which political leadership changes influenced completion rates of infrastructure projects	-0.213	0.073	-0.181	-2.904	0.004

Table 12. Coefficients of Regression

4. Discussion

The findings of this study have demonstrated that infrastructure projects were implemented in the study areas evidenced by a total of 304 (78.8%) respondents who reported having knowledge of stalled or abandoned infrastructure projects in their respective counties. Further, the two counties were adequately represented in the study evidenced by representation from both counties where members came from at least 24 wards within the counties of Murang'a and Kiambu. The study has also shown that there were individuals who considered infrastructure projects well completed while others differed with that view and some section remaining neutral. This means that parameters that were used to judge the projects were varied amongst individuals shown by 26% of respondents who were neutral, and 37% who thought the projects were to a large extent completed and a similar percentage who thought otherwise. These finding were corroborated by the finding of Kärnä et al., (2013) who argued that projects could be judged as completed by a section of stakeholders while others hold contrasting views because of varied parameters of evaluation. However, this should never happen because where projects are implemented in a participatory manner all stakeholders are expected to have common key performance indicators because they are collaboratively developed and implemented. In such cases the findings by different stakeholders are expected to concur or have minimal variations which may stem from individual prejudices and past experiences.

The findings further demonstrate that politics and political leadership changes influenced completion rates of infrastructure projects. This is because a large proportion of respondents 287 (74.4%) at least thought that to a large extent political leadership changes influenced completion rates of infrastructure projects compared to 39 (10.1%) who thought otherwise. This means that those respondents who thought political leadership changes influenced completion rates of projects were more likely to elect leaders who had a track record of delivering quality projects or at least demonstrated keen interest in implementing projects with benefits to the community. Those community members who thought otherwise were more likely to be guided by other

a. Dependent Variable: To what extent are projects completed

considerations apart from former track record in completion of projects. These findings were corroborated by Ruiz Díaz, (2020) who noted that political leadership had a lot of sway in completion rates of infrastructure projects.

Considering that F (2,383) = 7.11 p < 0.05. The findings were statistically significant implying that the null hypothesis was rejected. This shows that Politics and political leadership changes do influence completion rates of infrastructure projects. However, it is important to note that the R²=0.036 which implies that politics and political transitions have a low predictive power. It therefore means that despite the fact that the findings were statistically significant, only a small proportion of completion rates of infrastructure projects can be explained by politics and political leadership changes. There are other factors or variables not included in the models that account for a big proportion (0.964 equivalent to 96.4%) of completion rates of infrastructure projects. The findings of this study were echoed by those of Ruiz Díaz, (2020) which found that politics have a significant influence on completion rates of infrastructure projects. This is mostly because politics may derail project progress as individual actors seek to sway progress in directions favourable to themselves and their constituents. Such actions may be taken irrespective of the consequences on the project progress or completion time as long as individual interests are fulfilled. However, the case may be different when such influence is in the interest of the individual political player but at the same time aligned towards positive progress and completion of a particular infrastructure project. In such a case the project completion period may reduce, and the standard of project delivery and its completion time positively affected. This therefore implies the political influence in the infrastructure projects may be beneficial or detrimental to the projects. The only constant factor is that in the absence of politics and political leadership changes, and where projects are conceived according to required standards and executed as such then such project are almost assured of completion and delivery of expected results. One key informant interviewee reported that political leadership changes were key to completions of infrastructure projects in the county. This is because each leader is elected on a specific manifesto which must be implemented within the five years. Such leaders prioritise items in their manifesto and ignore any project that is not aligned to the manifest resulting in abandoned projects.

Observations by Mokaanomagonya and Otieno, (2019) revealed that project resources including professional qualifications of project teams as well as financial input provided on time for different project activities means a lot for the completion of the infrastructure projects. This means that despite the fact that politics and political leadership changes hold sway in the completion of projects there are also other salient factors which may have serious contributions on the completion rates. Infrastructure projects are initiated with main purpose of development benefiting the stakeholders of a given region. This includes the constituents of a county or country that initiates such projects, especially using taxpayers' funds. However, due to selfishness of politics and the political players such development intentions become subservient to those of individual politicians thus distracting the direction and completion of such projects. This was evidenced by the fact that by 2015, Machakos town had projected to have a modern metropolis. However, the project failed to deliver the expected results because the political player either changed the initial goals and objectives or the visionary leaders were replaced by others who held different agendas. It implies, politics and political leaders have significant influence on the completion rates of infrastructure projects. This may likely be because such projects are mainly initiated by government agencies, many of whose personnel lean towards the support and patronage of certain political leaders. In cases where such leader's agenda is not implemented according to their own script the leadership of such projects may suffer repercussions from such political leaders. Since political leadership allocated finance support to different projects many staff and project personnel tend to

support the politicians' agenda with the hope of support and continued benefits. However, despite these findings, the study does recommend that future studies should incorporate control variables in the regression model such as project size, funding type, or institutional capacity to improve the model's explanatory power.

5. Conclusion

This study concluded that politics and political leadership changes do influence completion rates of infrastructure projects to some extent. This is because the study observed that politics and political leadership changes only explained a small proportion of the variances observed in the regression model. However, the influence may be positive or negative depending on the interests and agenda of individual political leaders. However, project management principles, when adhered to ensure successful implementation of different projects, do also contribute towards the completion rates of the projects. The project management principles are, however, swayed by the agenda of different political leadership because it may determine allocation of resources which are crucial to the successful completion of the projects. In instances where such resources are withheld from the project activities the projects are likely to stall and fail to attain completion. It is therefore important to adhere to project management principles and also take care of the politics around a given project to ensure successful completion. This study recommended a policy be enacted requiring all political leaders coming into office prioritize completion of infrastructure projects initiated earlier prior to starting new projects.

Acknowledgements

The community members who provided research data are highly acknowledged. The county government and all administrators who provided authorizations and support are acknowledged for their work. Finally, we acknowledge the statistician who was very helpful in handling data.

References

- Bluhm, R., Dreher, A., Fuchs, A., Parks, B.C., Strange, A.M., and Tierney, M.J. (2025), "Connective financing: Chinese infrastructure projects and the diffusion of economic activity in developing countries", *Journal of Urban Economics*, Vol. 145. p. 103730. https://doi.org/10.1016/j.jue.2024.103730
- Chileshe, N., Njau, C. W., Kibichii, B. K., Njeri, L., and Kavishe. (2020). Critical success factors for Public-Private Partnership (PPP) infrastructure and housing projects in Kenya Critical success factors for Public-Private Partnership (PPP) infrastructure and. *International Journal of Construction Management*, Vol. 0 No. 0, pp. 1–12. https://doi.org/10.1080/15623599.2020.1736835
- Dawar, K. (2023). Global Britain and the national interest: Development aid under the FDCO. *Kings Law Journal*, Vol. 34 No. 1, pp. 105–119. https://doi.org/10.1080/09615768.2023.2188881
- Gray, N. (2022). Sate subsidy gap correcting market failure? Stalled regeneration and the state subsidy gap. *Taylor and Francis*, Vol. 4. https://doi.org/10.1080/13604813.2021.2017193

- Jaihan, and Suman, V. (2021). Factors Contributing Stalling or Abandonment of Construction Project. *International Journal of Science and Advance Research in Technology*, Vol.7 No.6.
- Kärnä, S., Junnonen, J., and Manninen, A. (2013). Exploring project participants' satisfaction in the infrastructure projects. *The Engineering Project Organization Journal*, Vol. 3 No.4, pp. 186–197. https://doi.org/http://dx.doi.org/10.1080/21573727.2013.823083
- Macura, D., Laketić, M., Pamučar, D., and Marinkovi, D. (2022). Risk Analysis Model with Interval Type-2 Fuzzy FMEA Case Study of Railway Infrastructure Projects in the Republic of Serbia. *Acta Polytechnica Hungarica*, Vol.19 No.3, pp. 103–118.
- Mokaanomagonya, D., and Otieno, M. (2019). Determinants of completion rate of infrastructural county funded road projects: A case of Nyamira county, Kenya. *International Journal of Novel Research in Humanity and Social Sciences*, Vol. 6 No.6, pp.155–173.
- Nishitateno, S. (2024). Does official development assistance benefit the donor economy? New evidence from Japanese overseas infrastructure projects. *International Tax and Public Finance*, Vol. 31 No. 4, pp. 1037–1065. https://doi.org/10.1007/s10797-023-09788-8
- Onyango, L. B., and Bwisa, H. (2017). Critical Factors Influencing the Implementation of Public Infrastructure Projects in Kenya: A case of Thika. *International Journal of Scientific and Research Publications*, Vol. 7 No.5, pp. 200–211.
- Prasetya, K. D., and Pratama, D. (2021). Analysis of Distributed Application Scrum Model Compared to Waterfall approach in Development Waterfall approach in Third-Party Application Development. *Procedia Computer Science*, Vol. 179, pp. 103–111. https://doi.org/10.1016/j.procs.2020.12.014
- Robinson, J. A., and Torvik, R. (2005). White elephants. *Journal of Public Economics*, Vol. 89, pp. 197–210. https://doi.org/10.1016/j.jpubeco.2004.05.004
- Ruiz Díaz, G. (2020). What drives the failure of private participation in infrastructure projects? *International Journal of Managing Projects in Business*.Vol. 2. https://doi.org/10.1108/IJMPB-12-2019-0298
- Thesing, T., Carsten, F., and Martin, B. (2021). Agile versus Waterfall Project Management: Decision Model for Selecting the Appropriate Approach to a Project. *Procedia Computer Science*, Vol. 181, pp. 746–756. https://doi.org/10.1016/j.procs.2021.01.227
- https://www.kenyans.co.ke/news/98060-kenya-foreign-embassy-declared-inhabitable-despite-ksh-5458m-investment-auditor-general (accessed 15 August 2025).